期刊文献+

一种面向用户需求的属性约简算法 被引量:5

An User-Oriented Attribute Reduct Construction Algorithm
下载PDF
导出
摘要 在已有的属性约简算法中,一般假定属性集中的属性同等重要.然而,对于实际问题,这种假定既不合理也不实际,因为属性的重要性往往与用户的需求相关.许多已经提出的面向用户需求的学习算法给出的结果不能保证与用户的需求完全匹配.将描述用户需求的属性序纳入考虑,并将属性约简问题转化为集合覆盖的约简问题求解,提出一种面向用户需求的属性约简算法,旨在获得满足用户需求或偏好的最小属性约简.理论分析、实验和实例显示,算法可行且有效. In existing attribute reduction algorithms, attributes in an attribute set are assumed to be equally important. However, the assumption is unreasonable and impractical for some practical applications, since the importance of attributes is usually related to demands or preferences which are different from one to another, The results of many other user-oriented algorithms fail to provide the exact match to needs. In this paper, considering the attribute order of users' demands and simplifying attribute reduction into set cover reduction, an user-oriented attribute reduction algorithm is proposed proposed algorithm is to get a minimum attribute reduction to satisfy users' demands or preferences. As a result, the proved to be feasible and effective.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第3期281-288,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.61273294)
关键词 属性约简 约简 覆盖约简 最小覆盖约简 属性序 Attribute Reduction, Reduct, Cover Reduction, Minimal Cover Reduction, Attribute Order
  • 相关文献

参考文献4

二级参考文献10

  • 1Su-QingHan JueWang.Reduct and Attribute Order[J].Journal of Computer Science & Technology,2004,19(4):429-449. 被引量:24
  • 2Wang J,Fuzzy Logic and Soft Computing,1999年,195页
  • 3Wang J,J Computer Sci Technol,1998年,13卷,2期,189页
  • 4Wang J,计算机学报,1998年,21卷,5期,393页
  • 5Quilan J,Machine Learning,1986年,81页
  • 6Wang Jue, Wang Ju. Reduct algorithms on discernibility matrix: The ordered attributes method. J. Computer Science and Technology, 2001, 16(6): 489-504.
  • 7Skowron A, Rauszer C. The discernibility matrices and functions in information systems. Intelligent Decision Support Handbook of Applications and Advance of the Rough Sets Theory, Slowinski R et al. (eds.), 1991,pp.331-362.
  • 8Pawlak Z. Rough sets. Int. J. Comput. Inform. Sci.,1982, 11(5): 341-356.
  • 9王珏,崔佳,赵凯.Investigation on AQ11, ID3 and the Principle of Discernibility Matrix[J].Journal of Computer Science & Technology,2001,16(1):1-12. 被引量:2
  • 10王珏,王驹,等.Reduction Algorithms Based on Discernibility Matrix:The Ordered Attributes Method[J].Journal of Computer Science & Technology,2001,16(6):489-504. 被引量:130

共引文献149

同被引文献44

  • 1Su-QingHan JueWang.Reduct and Attribute Order[J].Journal of Computer Science & Technology,2004,19(4):429-449. 被引量:24
  • 2胡峰,王国胤.属性序下的快速约简算法[J].计算机学报,2007,30(8):1429-1435. 被引量:49
  • 3Jensen R, Shen Q. Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans. on Knowledge and Data Engineering, 2004, 16(12): 1457-1471.
  • 4Wroblewski, J. Finding minimal reducts using genetic algorithms. Proc. of the Second Annual Join Conference on Information Sciences. Wrightsville Beach. NC. 1995. 186-189.
  • 5Jensen R, Shen Q. Finding rough set reducts with ant colony optimization. Proc. of the 2003 UK Workshop on Computational Intelligence. 2003.15-22.
  • 6Hedar AR, Wang J, Fukushima M. Tabu search for attribute reduction in rough set theory. Springer-Verlag. Sot~ Comput, 2008, 12(9): 909-918.
  • 7Wang XY, Yang J, Peng NS, et al. Finding minimal rough set reducts with particle swarm optimization. Springer-Verlag Berlin Heidelberg. 2005.451-460.
  • 8Maniezzo V, Colorni A. The ant system applied to the quadratic assignment problem. Knowledge and Data Engineering, 1999, 11(5): 769-778.
  • 9Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperating agents. IEEE Trans. on Systems, Man, and Cybernetics, Part B, 1996, 26(1): 29-41.
  • 10Deng TQ, Yang CD, Zhang YT, Wang XX. An Improved Ant Colony Optimization Applied to Attributes Reduction. German. Springer-Verlag Berlin Heidelberg. 2009. 1-6.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部