期刊文献+

ZnO掺杂的SnO_2纳米纤维的制备、表征及气敏机理(英文) 被引量:7

Preparation, Characterization and Gas Sensing Mechanism of ZnO-Doped SnO_2 Nanofibers
下载PDF
导出
摘要 以二水氯化亚锡(SnCl2·2H2O)为盐原料,采用静电纺丝的方法制备了SnO2纳米纤维.为了研究ZnO掺杂对SnO2形貌、结构及化学成分的影响,分别制备了不同含量ZnO掺杂的SnO2/ZnO复合材料.利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱仪、扫描电镜(SEM)及能量色散X射线(EDX)光谱对材料的结晶学特性及微结构进行了表征.制备的SnO2/ZnO复合材料是由纳米量级的小颗粒构成的分级结构材料.ZnO含量不同,对应的SnO2/ZnO复合材料结构不同.表征结果表明ZnO的掺杂量对SnO2材料的形貌及结构均起着重要作用.将制备的不同ZnO含量的SnO2/ZnO复合材料进行气敏测试,测试结果表明,Sn:Zn摩尔比为1:1制作的气敏元件对甲醇的灵敏度优于其它摩尔比的气敏元件.讨论了SnO2/ZnO复合材料气敏元件的敏感机理.同时针对Sn:Zn摩尔比为1:1时表现出最好的气敏响应,分析了其原因,包括Zn的替位式掺杂行为、ZnO的催化作用、过量ZnO对SnO2生长的抑制作用以及SnO2与ZnO晶粒界面处的异质结. SnO2 nanofibers were fabricated by electrospinning, using SnCI2.2H20 as the raw material. The influences of ZnO doping on the morphologies, structures, and compositions of the SnO2 nanofibers were studied by introducing different amounts of ZnO into the SnO2. The crystallography and microstructures of the synthesized SnO2/ZnO composite nanofibers with different molar ratios of Sn to Zn were investigated using thermogravimetric/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The obtained SnO2/ZnO composite nanofibers with different ZnO contents had hollow hierarchical structures composed of nanocrystals. Different amounts of ZnO gave different structures. The characterization results showed that the introduction of ZnO into SnO2 played an important role in the SnO2 nanofiber structure. The gas sensing properties of sensors based on different Z.nO-doped SnO2 nanofibers were tested. The results indicated that the methanol-sensing performance of the sensor containing SnO2/ZnO in a molar ratio of 1:1 was better than those of the others. The sensing mechanisms of ZnO-doped SnO2 nanofibers were examined in detail. Possible reasons for the enhanced response of the SnO2/ZnO-based sensor with a molar ratio of 1:1 are substitutional doping of Zn into Sn02, the catalytic effect of ZnO addition, and the inhibitory effect of excess ZnO, as well as the heterojunction across the Sn02 and ZnO interface.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第4期781-788,共8页 Acta Physico-Chimica Sinica
基金 supported by the National Natural Science Foundation of China(61176068,61131004,61001054)~~
关键词 静电纺丝 复合纳米纤维 气体传感器 甲醇 异质结 Electrospinning Composite nanofiber Gassensor Methanol Heterojunction
  • 相关文献

参考文献4

二级参考文献86

  • 1侯长平,李永红,葛秀涛,方大儒,沈玲,刘杏芹.CdO对In_2O_3电导和气敏性能的影响[J].电子元件与材料,2004,23(9):17-18. 被引量:5
  • 2苏宜,谢毅,陈乾旺,钱逸泰.纳米ZnS、CdS水热合成及其表征[J].应用化学,1996,13(5):56-57. 被引量:37
  • 3Gurlo A, Barsan N, Ivanovskaya M, et al. In2O3 and MoO3- In2O3 thin film semicoductor sensors: interaction with NO2 and O3 [J]. Sens Actuat B, 1998, 47: 92-98.
  • 4Romanovskaya V, Ivanovskaya M, Bogdanov P. A study of sensing properties of Pt-and Au-loaded In2O3 ceramics [J]. Sens Actuat B, 1999, 56: 31-36.
  • 5Gurlo A, Ivanovskaya M, Barsan, et al. Grain size control in nanocrystalline In2O3 semicoductor gas sensors [J]. Sens Actuat B, 1997, 44: 327-333.
  • 6Ivanovskaya M, Bogdanov P. Effect of Ni2+ ions on the In2O3-based ceramic sensors [J]. Sens Actuat B, 1998, 53: 44-53.
  • 7Bogdanov P, Ivanovskaya M, Comini E, et al. Effect of nickel ions on sensitivity of In2O3 thin film sensors to NO2 [J]. Sens Actuat B, 1999, 57: 153-158.
  • 8Chu X F, Liu X Q, Meng G Y. Preparation and gas sensitivity properties of ZnFe2O4 semiconductors [J]. Sens Actuat B, 1999, 55: 19-22.
  • 9Fujishima A, Honda K. [J]. Nature,1972, 238, 37.
  • 10Jean-Francois R, Milos R. [J]. J Phys Chem, 1986, 90:824-834.

共引文献43

同被引文献37

  • 1杨建华,候宏,王磊,刘福.基于集成气敏传感器阵列的电子鼻系统环境响应特性分析[J].传感技术学报,2002,15(3):197-202. 被引量:18
  • 2赵海军,候海涛,曹洁明,郑明波,刘劲松,张防.溶剂热合成具有海绵状结构的介孔SnO_2[J].物理化学学报,2007,23(6):959-963. 被引量:3
  • 3Wang Y,Jiang X,Xia Y. A solution-phase,precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions[J]. J Am Chem Soc, 2003,125 (52) : 16176-16177.
  • 4Shi L,Lin H. Preparation of band gap tunable SnO2 nanotubes and their ethanol sensing properties[J]. Langmuir,2011,27(7) : 3977-3981.
  • 5Zeng W,Liu T,Liu D J ,et al. Hydrogen sensing and mechanism of M-doped SnOz (M: Cr3+ , Cu2+ and Pd2+ ) nanocomposite [J]. Sens Actuators B,2011,160(1) :455-462.
  • 6Yu J FI ,Choi G M. Selective CO gas detection of CuO-and ZnO- doped SnO2 gas sensor[J]. Sens Actuators B, 2001,75 ( 1 ) : 56- 61.
  • 7Jia T, Wang W, Long F, et al. Synthesis, characterization, and photoeatalytic aetivity of Zn-doped SnO2 hierarchical architee- tures assembled by nanoeones[J]. J Phys Chem C, 2009, 113 (21) : 9071-9077.
  • 8Ding X, Zeng D, Xie C. Controlled growth of SnO2 nanorods clusters via Zn doping and its influence on gas-sensing[J]. Sens Actuators B,2010,149(2) :336-344.
  • 9Yin X T,Guo X M. Selectivity and sensitivity of Pd-loaded and Fe-doped SnO2 sensor for CO detection[J]. Sens Actuators B, 2014,200:213-218.
  • 10Sun P, You L, Sun Y, et al. Novel Zn-doped SnOz hierarchical architectures:synthesis, characterization, and gas sensing prop- erties[J]. Cryst Eng Comm,2012,14(5) ,1701-1708.

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部