期刊文献+

一种用于高动态全球定位系统信号跟踪的新模型

A Novel Model for High Dynamic GPS Signal Tracking
下载PDF
导出
摘要 针对传统全球定位系统(GPS)信号跟踪方法在高动态环境下跟踪精度不够理想且容易失锁等缺陷,提出了一种新的跟踪模型.采用包含多普勒频移与码相位误差的二维观测相关器组,并通过基于列文伯格-马夸尔特方法优化的迭代扩展卡尔曼滤波算法,使跟踪环路在码相位与载波频率初始捕获误差较大的情况下,依然能够快速而准确地收敛,成功解调出导航信息.仿真结果显示,利用新的GPS信号跟踪模型能够高质量地完成加速度为150g的高动态GPS信号跟踪. A novel tracking model was proposed for high dynamic condition under which the traditional GPS signal tracking method has a high probability of losing lock as well as a low accuracy. The output from a large number of eorrelators with wide ranges of uncertainty in code phase and carrier phase were used. An optimized iterated extended Kalman filter algorithm based on the Levenberg-Marquardt method was also implemented to process the output from the correlators, despite large acquisition errors. The simulation results show that the new model performs well in tracking a high dynamic GPS signal with an acceleration of 150 g.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第3期323-327,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(40674002) 上海航天科技创新基金(D202)资助项目
关键词 全球定位系统 高动态跟踪 迭代扩展卡尔曼滤波 列文伯格-马夸尔特方法 global positioning system (GPS) high-dynamic-condition tracking iterated extended Kalmanfilter (IEKF) Levenberg-Marquardt method
  • 相关文献

参考文献11

  • 1Kaplan E D. Understanding GPS principles and appli cations[M]. 2nd ed. Boston: Artech House, Inc2006: 219-232.
  • 2Fang J C, Gong X L. Predictive iterated Kalman fil- ter for INS/GPS integration and its application to SAR motion compensation[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4) : 909 -915.
  • 3Bell B M, Cathey F W. The iterated Kalman filter update as a Gauss-Newton method[J]. IEEE Trans- actions on Automatic Control, 1993, 38(2): 294-297.
  • 4Chiang K Q Z, Psiaki M L. GNSS signal tracking using a bank of correlatorsEC]//Proceedings of the 23rd International Technical Meeting of The Satellite Division of the Institute of Navigation. Portland OR: The Institute of Navigation, 2010:3258 -3267.
  • 5Psiaki M I., Jung H. Extended Kalman filter meth- ods for tracking weak GPS signals~C~ // Proceedings of the 15th International Technical Meeting of the Sat- ellite Division of The Institute of Navigation. Portland OR: The Institute of Navigation, 2002: 2539-2553.
  • 6Im S H, Song J H, .lee G l, et al. Comparison of GPS tracking loop performance in high dynamic con- dition with nonlinear filtering techniques EC~//Pro- ceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation. Savannah GA: The Institute of Navigation, 2008: 2351-2360.
  • 7Spinello D, Stilwell D J. Nonlinear estimation with state dependent Gaussian observation noise[J]. IEEE Transactions on Automatic Control, 2010, 55 ( 6 ) .. 1358-1366.
  • 8Zhan R, Wan J. Iterated unscented Kalman filter for passive target tracking[J].IEEE Transactions on Aer- ospace and Electronic Systems, 2007, 43 (3) : 1155 - 1163.
  • 9Barrios C, Motai Y. Improving estimation of vehicle's trajectory using the latest global positioning system with Kalman filtering[J]. IEEE Transactions on In- strumentation and Measurement, 2011, 60 ( 12 ) .. 3747- 3755.
  • 10杨宏,李亚安,李国辉.一种改进扩展卡尔曼滤波新方法[J].计算机工程与应用,2010,46(19):18-20. 被引量:33

二级参考文献6

  • 1李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 2Daum F E.Nonlinear filters:beyond the Kalman filter[J].IEEE AES Systems Magazine,2005,20(8):57-69.
  • 3Li X R,Jilkov V P.A survey of maneuvering target tracking approximation techniques for nonlinear filtering[C] //Proc of the SPIE.rlando:SPIE,2004,5428:537-550.
  • 4Jihua Zhu,Nanning Zheng,Zejian Yuan,et al.A SLAM algorithm based on the central difference Kalman filter[C] //Intelligent Vehicles Symposium.IEEE,2009:123-128.
  • 5Juliet S,Uhlmaun J K.Unscented filtering and nonlinear estimation[J].IEEE,2004,92 (3):401-422.
  • 6Dennis J,Schnabel R.Numerical methods for unconstrained optimization and nonlinear equations[M/OL].Philadelphia:SIAM,1996:218-236.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部