期刊文献+

仿昆扑翼微飞行器中高效传动铰链的研究 被引量:9

Efficient Flexures for Insect-Like Flapping-Wing Micro Aerial Vehicle
下载PDF
导出
摘要 针对仿昆扑翼微飞行器对高效传动铰链的要求,从几何约束、应力条件、临界屈曲条件等方面,结合电磁驱动仿昆扑翼微飞行器对异质复合型柔性铰链进行了研究,给出了铰链的设计方法;研究了预应力对整个传动机构并联刚度以及铰链连接方式对整个传动机构串联刚度的影响;得到了传动机构中各铰链的宽度、厚度、长度、旋转刚度等设计参数.结果表明,整个传动机构的串联刚度是其并联刚度的135倍,满足了高效传递能量的要求;翅膀扑打角峰峰值达到了99.6°,较好符合了仿昆扑翼微飞行器的设计要求. In order to design efficient flexures for the insect-like flapping-wing micro aerial vehicle, researches on heterogeneous compound flexures in electromagnetic flapping-wing aerial vehicles were conducted, taking into consideration the geometric constraint, stress and critical buckling conditions. The flexure design methods were given. Besides, the effect of the orientation of flexures on the overall parallel stiffness and that of the pre-stressing on the overall serial stiffness were also examined. Flexure dimensions of width, thickness, length and rotational stiffness for transmission gear were provided. The simulation resuits show that the overall serial stiffness is 135 times as big as the overall parallel stiffness, making possible highly efficient energy transmission. Moreover, the peak-to-peak stroke angle can reach 99.6°, which meets the design requirement for the insect-like flapping wing micro aerial vehicle.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第3期439-444,共6页 Journal of Shanghai Jiaotong University
基金 教育部新世纪优秀人才支持计划(NCET 10-0583) 教育部支撑项目(62501040303) 国防项目(9140A26020313JW03371)
关键词 扑翼微飞行器 复合型柔性铰链 设计方法 flapping-wing micro aerial vehicle compound flexures design methods
  • 相关文献

参考文献12

  • 1Wood R J. The First Takeoff of a Biologically in spired at-scale robotic insect[J]. IEEE Transactions on Robotics, 2008, 24(2):341- 347.
  • 2Hines L, Arabagi V, Sitti M. Free flight simulations and pitch and roll control experiments of a sub-gram flapping-flight micro aerial vehicle[C]// IEEE Inter- national Conference on Robotics and Automation, Shanghai, China: IEEE Press, 2011.
  • 3Tan X B, Zhang W P, Ke X J, etal. Development of flapping-wing micro air vehicle in asia[C]// World Congress on Intelligent Control and Automation (WCI- CA). Beijing, China: IEEE Press, 2012.
  • 4Wood R J, Avadhanula S, Menon M, et al. Mieroro- hot design using fiber reinforced composites[C] // IEEE International on Robotics and Automation. Tai-pei, Taiwan: IEEE Press, 2003.
  • 5王姝歆,陈国平,周建华,颜景平.复合型柔性铰链机构特性及其应用研究[J].光学精密工程,2005,13(z1):91-97. 被引量:16
  • 6迟鹏程,张卫平,陈文元,李洪谊,孟坤,崔峰,刘武,吴校生.基于MEMS技术的SU-8仿昆虫微扑翼飞行器设计及制作[J].机器人,2011,33(3):366-370. 被引量:14
  • 7(;hi PC, ZhangWP, ChenWY, etal. Design, fab rication and analysis of macrorobotic inset wings and throax with different materials by MEMS technology [J 1. Advanced Materials Research, 2011, 291-294:3135 3138.
  • 8Meng K, Zhang W P, Chen W Y, et al. The design and micromachining of an electromagnetic MEMS flapping-wing micro air vehicle [J]. Microsystem Technologies, 2012(18) : 127- 136.
  • 9Hines L, Arabagi V, Sitti M. Shape memory poly mer based flexure stiffness control in a miniature flap ping wing robot [J]. IEEE Transactions on Robotics and Automation, 2012, 28(4): 987-990.
  • 10Nicolae L. Compliant mechanisms design of flexure hinges[M]. Boca Raton, US.. CRC Press INC, 2003.

二级参考文献13

  • 1[5]HOWELL L L,MIDHA A.Determination of the degree of freedom of compliant mechanisms using the pseudo-rigid-body model concept[C].Proceedings of the Ninth World Congress on the Theroy of Machines and Mechanisms,Milano,Italy,1995,2:1537-1541.
  • 2[6]LOBONTIU N.Distributed-parameter dynamic model and optimized design of a four-link pendulum with flexible hinges[J].Mechanism and Machine Theory,2001,(36):653-669.
  • 3[7]SHIMOYAMA I,KUBO Y,KANEDA T,et al.Simple microflight mechanism on silicon wafer[C].IEEE Workshop on Micro Electro Mechanical Systems,Oiso,Japan,1994.148-152.
  • 4[8]ARAI K I,SUGAWARA W,HONDA T.Magnetic flying machines[C].The 8th International Conference on Solid-State Sensors and Actuators,Stockholm,Sweden,1995,1:316-319.
  • 5[9]SITTI M.Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax[J].IEEE/ASME Transactions on Mechatronics,2003,8(1):26-36.
  • 6[10]AVADHANULA S,WOOD R J,CAMPOLO D,et al.Dynamic tuned design of the MFI thorax[C].IEEE International Conference on Robotics and Automation,Washington DC,2002.52-59.
  • 7Wood R J. Liftoff of a 60mg flapping-wing MAV[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2007: 1889-1894.
  • 8Wood R J. Design, fabrication, and analysis of a 3DOF, 3cm flapping-wing MAV[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2007: 1576-1581.
  • 9Dargent T, Bao X Q, Grondel S, et al. Micromachining of an SU-8 flapping-wing flying micro-electro-mechanical system[J]. Journal of Micromechanics and Microengineering, 2009, 19(8): 085028.
  • 10del Campo A, Greiner C. SU-8: A photoresist for high-aspect- ratio and 3D submicron lithography[J]. Journal of Microme- chanics and Microengineering, 2007, 17(6): 81-95.

共引文献28

同被引文献62

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部