期刊文献+

直接微积分简化教学二小时 被引量:2

下载PDF
导出
摘要 现在全国每年有几百万大学生和高中生学习微积分.教微积分的老师们常常思考如何上好头两节课,把学生直接引导到微积分的核心,提高学生自觉学习微积分的能力.而传统的微积分教学从极限开始,经过了7-8节课时,学生还不能了解微积分的中心思想是什么.
作者 沈善普 林群
出处 《数学教学》 2014年第2期1-6,共6页
  • 相关文献

参考文献7

  • 1F. Cajori. A History of Mathematics, 4th ed., Chelsea Publishing Co., New York, 534pp, 1985.
  • 2J.L. Coolidge. The story of tangents. American Math. Monthly, 58(1951): 449-462.
  • 3D. Ginsburg, B. Groose, J. Taylor, and B. Vernescu. The History of the Calculus and the Development of Computer Algebra Systems, Worcester Polytechnic Institute Junior-Year Project, www.math.wpi.edu/IQP/ BVCalcHist/calctoc.html, 1998.
  • 4I. Newton. The and Infinite Series with Method of Fluxions Application to the Geometry of Curve-Lines, Translated from Latin to English by J. Colson, Printed for Henry Woodfall, London, 339pp, 1736. [http://books.google.com] http://books.google com/books?id=WyQOAAAAQAAJ&printsec =frontcover&source =gbs-ge_summary_r&cad =0#v=onepage&q&f=false.
  • 5I. Newton. The Mathematical Princi- ples of Natural Philosophy, Translated from Latin to English by A. Motte, Printed for Benjamin Motte, London, 320pp, 1729. [http://books.google.com] http://books.google eom/books?id=Tm0FAAAAQAAJ&printsec= frontcover&source =gbs_ge_summary_r&ead=0 #v=onepage&q&f-true.
  • 6J. Susuki, The lost calculus (1637- 1670): Tangency and optimization without limits [J]. Mathematics Mag., 78(2005): 339 353.
  • 7R.M. Range, Where are limits needed in calculus? [J]. Amer Math Monthly, 118 (2011): 404-417.

同被引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部