期刊文献+

基于隐马尔可夫预测的非对称信息功率博弈机制

Asymmetric information power game mechanism based on hidden Markov prediction
下载PDF
导出
摘要 为了解决无线资源竞争中功率博弈的博弈者获得的环境信息具有非对称性问题,提出了一种基于隐马尔可夫预测的功率博弈机制。该机制通过建立隐马尔可夫预测模型(HMPM)判断博弈的对手是否参与博弈,从而提高博弈的信息准确度;然后利用预测获得的信息通过代价函数计算最佳发射功率。仿真结果表明,与最大后验概率法(MAP)和不预测法(NP)相比,基于隐马尔可夫预测的功率博弈模型能够在满足目标容量的同时,较好地提高非授权用户的功率效率。 To solve the issue that,in wireless resource competition,the environment information which gamers get in power game is asymmetric,a power game mechanism based on hidden Markov prediction was proposed.By establishing a Hidden Markov Prediction Model (HMPM),the proposed mechanism estimated whether competitors would take part in the game to improve the information accuracy of the game.Then,the predicted information was used to calculate the best transmission power via the cost function.The simulation results show that,compared with MAP (Maximum A Posteriori) method and NP (No Predicting) method,the power game model based on hidden Markov prediction can not only meet the target capacity,but also improve the power efficiency of the unauthorized users.
出处 《计算机应用》 CSCD 北大核心 2014年第4期939-944,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61102062) 教育部科学技术研究重点项目(212145) 重庆市科委自然科学基金资助项目(CSTC2011JJA1192) 重庆市教委科学技术研究项目(KJ110503) 重庆邮电大学博士启动基金资助项目(A2010-11)
关键词 隐马尔可夫预测 非对称信息 功率控制 非合作博弈 代价函数 hidden Markov prediction asymmetric information power control noncooperative game cost function
  • 相关文献

参考文献19

  • 1WANG B, LIU K J R. Advances in cognitive radio networks: a sur- vey [ J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(1): 5-23.
  • 2RAOOF O, AL-RAWESHIDY H S. Spectrum sharing in cognitive radio networks: an adaptive game approach [ J]. IET Communica- tions, 2019, 6(11): 1495-1501.
  • 3ZOU J, XIONG H, WANG D, et al. Optimal power allocation for hybrid overlay/underlay spectrum sharing in multiband cognitive ra- dio networks [ J]. IEEE Transactions on Vehicular Technology, 2013, 62(4) : 1827 - 1837.
  • 4ZHENG L, TAN C W. Cognitive radio network duality and algo- rithms for utility maximization [ J]. IEEE Journal on Selected Areas in Communications, 2013, 31(3): 500-513.
  • 5LU K, ZHANG L, YANG J. An efficient SIR-first adaptive power control method in cognitive radio network [ C]//GHTCE 2012: Pro- ceedings of the 2012 Global High Tech Congress on Electronics. Pis- catawav: IEEE, 2012:91-94.
  • 6CHEN Y, YU G, ZHANG Z, et al. On cognitive radio networks with opportunistic power control strategies in fading channels [ J]. IEEE Transactions on Wireless Communications, 2008, 7(7) : 2752 - 2761.
  • 7SANCHEZ S M, SOUZA R D, FEMNDEZ E M G, et al. Rate and energy efficient power control in a cognitive radio Ad Hoc net- work [J]. IEEE Signal Processing Letters, 2013, 20(5): 451 - 454.
  • 8RAWAT D B, BISTA B B, YAN G. Precoder adaptation and power control in wireless Ad-Hoc networks for rate maximization [ C ]/! NBiS 2011: Proceedings of the 14th International Conference on Network-based Information Systems. Piscataway: IEEE, 2011:30 - 34.
  • 9OSBOME M J, RUBINSTEIN A. A course in game theory [ M]. Cambridge: MIT Press, 1994: 24-29.
  • 10SRIVASTAVA V, NEEL J, MACKENZIE A B, et al. Using game theory to analyze wireless Ad Hoc networks [ J]. IEEE Communica-tions Surveys and Tutorials, 2005, 7(4): 46-56.

二级参考文献11

  • 1FCC spectrum policy task force. Report of spectrum efficiency working group [ EB/OL ]. Washington: Federal Communications Commission, 2002 [ 2009-06-19 ]. http : //www. fcc. gov/sptf/files/SEWGFinalReport_ 1. pdf.
  • 2Claudia C, Kaushik R C. A survey on MAC protocols for cognitive radio networks[ J]. Ad Hoc Networks, 2009, 7 (7) : 1315-1329.
  • 3Ghasemi A, Sousa E S. Spectrum sensing in cognitive radio networks: requirements, challenges and design tradeoffs [ J]. IEEE Communications Magazine, 2008, 46 (4) : 32-39.
  • 4Unnikrishnan J V, Veeravalli V. Cooperative spectrum sensing and detection for cognitive radio [ C ] // IEEE Global Telecommunications Conference. Washington: [ s. n. ] , 2007: 2972-2976.
  • 5Zhou C, Chigan C. A game theoretic DSA-driven MAC framework for cognitive radio networks [ C ]//IEEE International Conference on Communications. Beijing: [ s. n. ] , 2008: 4165-4169.
  • 6Ma L, Han X, Shen C C. Dynamic open spectrum sharing for wireless ad hoc networks [ C ]// IEEE Dynamic Spectrum Access Networks. Maryland: [ s. n. ] , 2005 : 203 -213.
  • 7Pawelczak P, Prasad R V, Xia Liang, et al. Cognitive radio emergency networks-requirements and design[ C ] // IEEE Dynamic Spectrum Access networks. Maryland: [ s. n. ] , 2005: 601-606.
  • 8Su Hang, Zhang Xi, CREAM-MAC: an efficient cognitive radio-enabled multi-channel MAC protocol for wireless networks [ C ] //IEEE International Symposium on World of Wireless, Mobile and Multimedia Networks. Newport Beach : [ s. n. ] , 2008 : 1-8.
  • 9Baynast Alexandre de, Mahonen Petri, Petrova Marina. ARQ-based cross-layer optimization for wireless multicarrier transmission on cognitive radio networks [ J ]. Computer Networks, 2008, 52(4): 778-794.
  • 10Baldo Nicola, Zorzi Michele. Fuzzy logic for cross-layer optimization in cognitive radio networks[ J]. IEEE Communications Magazine, 2008, 23 (4): 64-71.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部