摘要
为了解决无线资源竞争中功率博弈的博弈者获得的环境信息具有非对称性问题,提出了一种基于隐马尔可夫预测的功率博弈机制。该机制通过建立隐马尔可夫预测模型(HMPM)判断博弈的对手是否参与博弈,从而提高博弈的信息准确度;然后利用预测获得的信息通过代价函数计算最佳发射功率。仿真结果表明,与最大后验概率法(MAP)和不预测法(NP)相比,基于隐马尔可夫预测的功率博弈模型能够在满足目标容量的同时,较好地提高非授权用户的功率效率。
To solve the issue that,in wireless resource competition,the environment information which gamers get in power game is asymmetric,a power game mechanism based on hidden Markov prediction was proposed.By establishing a Hidden Markov Prediction Model (HMPM),the proposed mechanism estimated whether competitors would take part in the game to improve the information accuracy of the game.Then,the predicted information was used to calculate the best transmission power via the cost function.The simulation results show that,compared with MAP (Maximum A Posteriori) method and NP (No Predicting) method,the power game model based on hidden Markov prediction can not only meet the target capacity,but also improve the power efficiency of the unauthorized users.
出处
《计算机应用》
CSCD
北大核心
2014年第4期939-944,共6页
journal of Computer Applications
基金
国家自然科学基金资助项目(61102062)
教育部科学技术研究重点项目(212145)
重庆市科委自然科学基金资助项目(CSTC2011JJA1192)
重庆市教委科学技术研究项目(KJ110503)
重庆邮电大学博士启动基金资助项目(A2010-11)
关键词
隐马尔可夫预测
非对称信息
功率控制
非合作博弈
代价函数
hidden Markov prediction
asymmetric information
power control
noncooperative game
cost function