期刊文献+

社会网络中的影响力综述 被引量:5

Survey of influence in social networks
下载PDF
导出
摘要 在社会影响力传播领域,社会网络作为媒介在社会个体之间相互影响、传播信息与观点方面发挥着根本性的作用。首先讨论了社会影响力的定义,以及社会影响力作为一种社会相关性的本质属性;然后分析阐述了影响力最大化问题中的独立级联模型和线性阈值模型以及能够确定具有影响力个体的贪心算法和探索式算法;最后对影响力研究的新趋势,诸如基于社区结构的影响力最大化算法以及讨论多个主题、多种行为的影响力研究进行了分析。 In the field of social influence propagation,social network as the media plays a fundamental role in interaction between social individuals and disseminating information or views.First,the definition of social influence and the essential attribute of social influences as the social relevance were discussed.Then,the independent cascade model and the linear threshold model were expounded,as well as greedy algorithm and heuristic algorithms which can confirm the influential people.Finally,the new trend of research on social influence,such as community-based influence maximization algorithm and research on the influence of multiple subjects and multiple behaviors were deeply analyzed.
出处 《计算机应用》 CSCD 北大核心 2014年第4期980-985,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61272422)
关键词 社会影响力 影响力最大化 社会网络 社会相关性 社区结构 social influence influence maximization social network social relevance community structure
  • 相关文献

参考文献16

  • 1RICHARDSON M, DOMINGOS P. Mining knowledge-sharing sites for viral marketing [ C]/! KDD '02: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2002:61-70.
  • 2KEMPE D, KLEINBERG J, TARDOS 1. Maximizing the spread of influence through a social network [ C]// KDD'03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2003:137 - 146.
  • 3FOWLER J H, CHRISTAKIS N A. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in theFramingham heart study [ J]. British Medical Journal, 2008, 337 (a2338): 1-9.
  • 4DUNBAR R. Neocortex size as a constraint on group size in primates [J]. Journal of Human Evolution, 1992, 22(6) : 469 -493.
  • 5BACKSTROM L, HUNTrENLOCHER D, KLEINBERG J, et al. Group formation in large social networks: membership, growth, and evolution [ C]// KDD '06: Proceedings of the 12th ACM SIGKDD Internatianal Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006:44-54.
  • 6MARLOW C, NAAMAN M, BOYD D, et al. HT06, tagging pa- per, taxonomy, Flickr, academic article, to read [ C]// HYPER- TEXT '06: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia. New York: ACM, 2006:31-g0.
  • 7ANAGNOSTOPOULOS A, KUMAR R, MAHDIAN M. Influence and correlation in social networks [ C]// KDD'08: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Dis- covery and Data Mining. New York: ACM, 2008:7 - 15.
  • 8ARAL S, MUCHNIK L, SUNDARARAJAN A. Distinguishing influ- ence-based contagion from homophily-driven diffusion in dynamic networks [ J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51) : 21544 -21549.
  • 9LESKOVEC J, KRAUSE A, GUESTRIN C. Cost-effective outbreak detection in networks [ C]//KDD'07: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007:420-429.
  • 10CHEN W, WANG Y, YANG S. Efficient influence maximization in social networks [ C]/! KDD'09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Da- ta Mining. New York: ACM, 2009:199-208.

同被引文献18

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部