期刊文献+

群蚊子追踪算法 被引量:1

Group mosquito host-seeking algorithm
下载PDF
导出
摘要 为利用高性能计算平台解决大规模复杂性问题,提出群蚊子追踪算法(GMHSA)。GMHSA是受到蚊子吸血行为的启发,以信息动力学为基础而提出的智能优化算法,涉及最大最小公平性及群体交互行为。利用群体分类机制,引入决策权概念,在整个种群中选择领导群体。利用领导力函数进行博弈,保持自身优越性,同时摆脱局部最优解。通过旅行商问题(TSP)对该算法进行测试,与其他智能优化算法进行对比,16节点并行实验中其加速比最高能达到15.8,接近线性加速比;而且GMHSA模型可直接用于运输问题等实际优化问题。结果表明GMHSA具有高度并行性及扩展性,是一种解决涉及行为的复杂优化问题的有效方法。 Concerning the optimization of the overall complexity problem on the high-performance computing platform,a new algorithm named Group Mosquito Host-Seeking Algorithm (GMHSA) was proposed.GMHSA was an intelligent optimization algorithm inspired by mosquitoes sucking blood behavior.It involved max-min fairness and group interaction behavior.The producer group was chosen according to the concept of leader decision and the leadership functions were constructed to make each group maintain their own superiority as well as getting rid of local optimal solution.The algorithm was tested by Traveling Salesman Problem (TSP) and compared with other swarm intelligent algorithms.In the parallel experiment of 16 nodes,the speedup of GMHSA was 15.8,which was nearly linear speedup.Moreover,it could be directly used to solve transport problems and other practical optimal problems.The results indicate that GMHSA has highly parallelism and scalability,and it is an effective measurement for solving complex optimal problems involving behavior.
出处 《计算机应用》 CSCD 北大核心 2014年第4期1055-1059,1064,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(60905043 61073107 61173048) 上海市教育委员会科研创新项目 中央高校基本科研业务费资助项目
关键词 蚊子追踪算法 旅行商问题 并行计算 群体分类机制 决策权 Mosquito Host-Seeking Algorithm (MHSA) Traveling Salesman Problem (TSP) parallel computing group classification mechanism leader decision
  • 相关文献

参考文献19

  • 1OKUYAMA T, OKITA M, ABE T, et al. Accelerating ODE-based simulation of general and heterogeneous biophysical models using a GPU [ J/OL]. IEEE Transactions on Parallel and Distributed Sys- tems [ 2013 - 11 - 20]. http://www, computer, org/csdl/trans/td/ preprint/06577372 -abs. html.
  • 2VACCARO A, POPOV M, VILLACCI D, et al. An integrated framework for smart microgrids modeling, monitoring, control, com- munication, and verification [ J]. Proceedings of the IEEE, 2011, 99(1): 119-132.
  • 3BALLARD G, DEMMEL J, HOLTZ O, et al. Communication-opti- mal parallel algorithm for Strassen's matrix multiplication [ C]//Pro- ceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures. New York: ACM, 2012:193-204.
  • 4HU T, HARDING S, BANZHAF W. Variable population size and evolution acceleration: a case study with a parallel evolutionary algo- rithm [ J]. Genetic Programming and Evolvable Machines, 2010, 11 (2) : 205 - 225.
  • 5李建明,迟忠先,万单领.一种基于GPU加速细粒度并行遗传算法的实现方法[J].控制与决策,2008,23(6):697-700. 被引量:15
  • 6LI J, ZHANG L, LIU L. A parallel immune algorithm based on fine-grained model with GPU-aceeleration [ C]// ICICIC 2009: Proceedings of the 2009 Fourth International Conference on Innova- tive Computing, Information and Control. Piscataway: IEEE, 2009:683-686.
  • 7ZHAO J, LIU Q, WANG W, et al. A parallel immune algorithm for traveling salesman problem and its application on cold roiling sched- uling [J]. Information Sciences, 2011, 181(7) : 1212 - 1223.
  • 8MEDINA-RODRIGUEZ N, MONTIEL-ROSS O, SEPULVEDA R, et al. Tool path optimization for computer numerical control machines based on parallel ACO [ J]. Engineering Letters, 2012, 20(1) : 101.
  • 9BONABEAU E, DORIGO M, THERAULAZ G. Swarm intelligence: from natural to artificial systems[ M]. New York: Oxford University Press, 1999.
  • 10BANDYOPADHYAY S K, BHATFACHARYYA D, DAS P. Mos- quito attack optimization [ J]. Ubiquity, 2006, 7(33) : Article No. 9.

二级参考文献11

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2刘立芳,霍红卫,王宝树.PHGA-COFFEE:多序列比对问题的并行混合遗传算法求解[J].计算机学报,2006,29(5):727-733. 被引量:11
  • 3Goldberg D E. Genetic algorithms in search, optimization and machine learning, reading [M]. MA Addison-Wesley, 1989.
  • 4Emily G, Jessie B. Parallel genetic algorithms: An exploration of weather prediction through clustered computing[J].J of Computing Sciences in Colleges, 2003, 18(5): 272-273.
  • 5Enrique A, Francisco L, Antonio J N. Parallel heterogeneous genetic algorithms for continuous optimization[J]. Parallel Computing, 2004, 30 ( 5 ) : 699-719.
  • 6Kohlmorgen U,Schmeck H,Haase K. Experiences with fine-grained parallel genetic algorithms[J]. Annals of Operations Research, 1999, 90: 203-219.
  • 7Martin P, Prasanna P, Arun R. Fine-grained parallel genetic algorithms in Charm++[J].ACM Crossroads Magazine: Parallel Computing, 2002, 8 (3).
  • 8Fernando G L, Claudio F, Hugo M. Massive parallelization of the compact genetic algorithm [C]. Proc of the Int Conf on Adaptive and Natural Computing Algorithms. Coimbra, 2005: 530-533.
  • 9Jowens J D, Luebke D, Govindaraju N. A survey of general purpose computation on graphics hardware[C]. Euro-Graphics 2005. Dublin, 2005: 21-51.
  • 10Fok K L, Wong T T, Wong M L. Evolutionary computing on consumer-level graphics hardware [J]. IEEE Intelligent Systems, 2005, 22(2): 69-78.

共引文献14

同被引文献19

  • 1ELAD E, MILANFAR P, RUBINSTEIN R. Analysis versus synthe- sis in signal priors[ J]. Inverse Problems, 2007, 23 (3) : 947 - 968.
  • 2CANDES E J, ELADAR Y C, NEEDEL D. Compressed sensing with coherent and redundant dictionaries [ J]. Applied and Compu- tational Harmonic Analysis, 2011, 31(1) : 59 -73.
  • 3RAUHUT H, SCHNASS K, VANDERHEYNEST P. Compressed sensing and redundant dictionaries [ J]. IEEE Transactions on In- formation Theory, 2008, 54(5) : 2210 - 2219.
  • 4CANDES E J, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies? [ J]. IEEE Transactions on Information Theory, 2006, 52(12) : 5406 - 5425.
  • 5FOUCART S. Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants[ C]// Proceedings of Approxi- mation Theory XIII. Piscataway: IEEE, 2012,13:65-77.
  • 6NAM S, DAVIS M, ELAD M, et al. Cosparse analysis modeling [ C]//Proceedings of the 2011 IEEE International Conference on A- coustics, Speech and Signal Processing. Piscataway: IEEE, 2011: 5804 - 5807.
  • 7DAI W, MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction [ J ]. IEEE Transactions on Information Theory, 2009,55 (5) :2230 - 2249.
  • 8NAM S, DAVIS M E, ELAD E, et al. The cosparse analysis model and algorithms [ J ~. Applied and Computational Harmonic Analysis,2013,34( 1 ) : 30 -56.
  • 9GIRYES R, NAM S, GRIBONVAL R. Iterative cosparse projection algorithms for the recovery of cosparse vectors [ EB/ OL]. [2012-10-10]. https://hal, inria, fr/inria4)0611592/file/ 1569427149. pdf.
  • 10BLUMENSATH T, DAVIS M. Iterative hard thresholding for compressed sensing [ J ]. Applied and Computational Harmonic Analysis,2009, 27(3 ) :265 -274.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部