摘要
传统多维贝叶斯网络分类器(MBNC)限制其模型结构必须是二分的,通过移除该限制可得到更准确的对关联分布建模的通用MBNC(GMBNC)。基于局部马尔可夫毯的迭代搜索,提出可准确学习GMBNC的算法IPCGMBNC。该算法由于无需学习全局贝叶斯网络(BN),可扩展性强。基于已知贝叶斯网络模型而随机生成的数据上所执行的实验显示,IPC-GMBNC可有效推导出目标结构;而且与传统的全局结构学习算法PC相比,IPC-GMBNC可节省大量的计算量。
The conventional Multi-dimensional Bayesian Network Classifier (MBNC) requires its structure be bi-partitie.Removing this constraint can result into a new tool named General MBNC (GMBNC),and it enables us to model the underlying joint distribution more correctly.Based on iterative local search of Markov blankets,an algorithm called IPCGMBNC was proposed to induce the exact structure of GMBNC.The proposed algorithm has good scalability because it does not need to recover the global Bayesian Network (BN) first.The experiments on samples generated from known Bayesian network structures indicate that IPC-GMBNC is effective,and it brings great reduction on computing complexity compared to global search approach,e.g.PC algorithm.
出处
《计算机应用》
CSCD
北大核心
2014年第4期1083-1088,共6页
journal of Computer Applications
基金
国家自然科学基金资助项目(61305058
61300139)
中央高校基本科研基金资助项目(11J0263)
厦门科技计划基金资助项目(3505Z20133027)
华侨大学科研基金资助项目(11Y0274
12HJY18)
关键词
多标签分类
多维分类
多维贝叶斯网络分类器
贝叶斯网络
马尔可夫毯
multi-label classification
multi-dimensional classification
Multi-dimensional Bayesian Network Classifier (MBNC)
Bayesian Network (BN)
Markov blanket