期刊文献+

自适应学习的多特征元素协同表示分类算法 被引量:3

Self-adaptive learning algorithm for collaborative representation classification of multi-feature elements
下载PDF
导出
摘要 针对基于传统的稀疏表示分类算法的单特征鉴别性较弱这一不足,提出一种基于自适应学习的多特征元素协同表示分类算法SLMCE_CRC。该算法结合多特征子字典的思想,对样本提出特征元素的双重分解,并分别从特征和元素角度分别进行相应的协同表示,自适应地学习出各个特征的稀疏权重和元素的残差权重,并进行线性加权,从而实现目标的分类。实验结果表明,使用该方法能显著提高识别率,尤其对含有较多特征细节的图像数据,具有一定的实用价值。 To address the weak discriminative power of Sparse Representation Classification (SRC),a self-adaptive learning algorithm for collaborative representation classification of multi-feature elements named SLMCE_CRC was proposed.Based on the idea of multi-feature sub-dictionary,the sample was collaboratively represented by features and elements,the sparse weights of features and the residual weights of elements were learnd self-adaptively and combined linearly to classify the samples.The experimental results demonstrate the effectiveness and high classification accuracy of the proposed algorithm.It is suitable to images with multi-features.
出处 《计算机应用》 CSCD 北大核心 2014年第4期1094-1098,1104,共6页 journal of Computer Applications
基金 陕西省教育厅自然科学研究项目(11JK0985) 陕西省科技厅工业攻关项目(2011K06-13) 西安市科技计划项目(CX12179(1))
关键词 自适应权重 协同表示 稀疏表示 特征提取 元素分解 adaptive weight Collaborative Representation (CR) sparse representation feature extraction elements decomposition
  • 相关文献

参考文献13

  • 1RIGAMONTI R, BROWN M A, LEPETIT V. Are sparse represen- tations really relevant for image classification? [ C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recogni- tion. Piscataway: IEEE, 2011:1545-1552.
  • 2SHI Q, ERIKSSON A, van den HENGEL A, et al. Is face recog-nition really a compressive sensing problem? [ C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recog- nition. Piscataway: IEEE, 2011:553-560.
  • 3高志荣,熊承义,笪邦友.改进的基于残差加权的稀疏表示人脸识别[J].中南民族大学学报(自然科学版),2012,31(3):72-76. 被引量:3
  • 4YANG M, ZHANG L, ZHANG D, et al. Relaxed collaborative representation for pattern classification [ C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recogni- tion. Piscataway: IEEE, 2012: 2224-2231.
  • 5ZHANG L, YANG M, FENG X. Sparse representation or collabo- rative representation: Which helps face recognition? [ C]// Pro- ceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011:471-478.
  • 6DONOHO D L, TSAIG Y. Fast solution of ll-norm minimization problems when the solution may be sparse [ R/OL]. Stanford: Stanford University, Department of Statistics (2006 - 10 -05) [2013 -05 - 15]. http://statweb, stanford, edu/ donoho/Re- ports/2006/kstep-20061005, pdf.
  • 7WRIGHT J, YANG A Y, GANESH A, et al. Robust face recogni- tion via sparse representation [ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 8HUANG J B, YANG M H. Fast sparse representation with proto- types [ C]//CVPR 2010: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010:3618-3625.
  • 9YANG M, ZHANG L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary [ M]// Computer Vision -- ECCV 2010: Proceedings of the l lth European Confer- ence on Computer Vision, LNCS 6316. Berlin: Springer-Verlag, 2010:448-461.
  • 10ZHANG N, JIAN Y. K nearest neighbor based local sparse repre- sentation classifier [ C]/! Proceedings of the 2010 Chinese Confer- ence on Pattern Recognition. Piscataway: IEEE, 2010:1 -5.

二级参考文献9

  • 1Candes E J, Wakin M B. An introduction to compressive sampling [ J ]. IEEE Signal Processing Magazine, 2008, 25(2) :21-30.
  • 2Wright J, Yang A, Ganesh A. Robust face recognition via sparse representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2) :210-227.
  • 3Patel V M, Wu T, Biswas S . Dictionary-based face recognition under variable lighting and pose [ J ]. IEEE Transactions on Information Forensics and Security, 2012, 7 (3) :954-965.
  • 4Qiao L S, Chen S C, Tan X Y. Sparsity preserving projections with applications to face recognition [ J ]. Pattern Recognition, 2010, 43 ( 1 ) :331-341.
  • 5Yang M, Zhang L, Yang J. Metaface learning for sparse representation based face [ C ]//IEEE. IEEE ICIP. Hong Kong : IEEE, 2010 : 1601-1604.
  • 6Yang J C, Yu K, Gong Y. Linear spatial pyramid matching using sparse coding for image classification [ C ]//IEEE. IEEE CVPR. USA: IEEE, 2009: 1794-1801.
  • 7Gao S I, Tsang I W, Liang T. Local features are not lonely-Laplacian sparse coding for image classification [ C ]//IEEE. IEEE CVPR. USA: IEEE, 2010: 3555-3561.
  • 8Nasseem I, Togncri R, Bennamoun M. Linear regression for face recognition [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32( 11 ) :2106-2112.
  • 9Wagner A, Wright J, Ganesh A. Towards a practical face recognition system: robust registration and illumination by sparse representation [ C ]//IEEE. IEEE CVPR. USA: IEEE, 2009:597-604.

共引文献2

同被引文献23

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部