期刊文献+

基于跨领域主动学习的图像分类方法 被引量:6

Cross-domain active learning algorithm for image classification
下载PDF
导出
摘要 针对基于单一领域主动学习的图像分类方法不能利用不同领域图像共同特征导致标记效率低下的问题,提出一种基于跨领域主动学习的图像分类方法。由不同领域图像学习出含共同隐特征的子空间,综合考虑共同特征和领域相关特征,将数据实例引起的模型损失减少量分解到一个共同部分和领域相关部分,从而领域间的共同信息可以编码到模型损失减少的共同部分并用来进行查询。实验结果显示该方法相对于单一模型学习和混合模型学习方法可以减少将近30%的标记工作,并且可以获得更高的精度,表明该方法可以更高效地运用于各种图像分类任务。 To solve the problem of ignoring common information in different domains in traditional active learning image classification,a new multi-domain active learning image classification method was proposed to reduce the labeling effort of image classification.It learned a subspace to represent common features among different images.Considering the common features and domain-specific features,the model loss due to each data instance could be divided into two parts,so that the common information could be queried from the common part.The experimental results show that the new method has some precise increase and has 30% less labeling efforts than the single model method and mixture model method.The results reveal that the new method can be widely used in all kinds of image classification tasks with higher precise and efficiency.
作者 邵忻
出处 《计算机应用》 CSCD 北大核心 2014年第4期1169-1171,1191,共4页 journal of Computer Applications
关键词 跨领域 迁移学习 主动学习 图像分类 模式识别 cross-domain transfer learning active learning image classification pattern recognition
  • 相关文献

参考文献3

二级参考文献36

  • 1廖克,成夕芳,吴健生,陈文惠.高分辨率卫星遥感影像在土地利用变化动态监测中的应用[J].测绘科学,2006,31(6):11-15. 被引量:90
  • 2Settles B. Active Learning Literature Survey, Computer Science Technical Report 1648, University of Wisconsin- Madison, USA, 2009. 3-4.
  • 3Dasgupta S. Coarse sample complexity bounds for active learning. Advances in Neural Information Processing Sys- tems. Cambridge: The MIT Press, 2006. 235-242.
  • 4Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM Inter- national Conference on Multimedia. New York, USA: ACM, 2001. 107-118.
  • 5Tong S, Koller D. Support vector machine active learning with applications to text classification. The Journal of Ma- chine Learning Research, 2002, 2:45-66.
  • 6Seung H S, Opper M, Sompolinsky H. Query by commit- tee. In: Proceedings of the 5th Annual Workshop on Com- putational Learning Theory. New York, USA: ACM, 1992. 287-294.
  • 7Dagan I, Engelson S P. Committee-based sampling for train- ing probabilistic classifiers. In: Proceedings of the 12th International Conference on Machine Learning. California, USA: Morgan Kaufmann, 1995. 150-157.
  • 8Hoi S C H, Jin R, Lyu M R. Batch mode active learning with applications to text categorization and image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1233-1248.
  • 9Joshi A J, Porikli F, Papanikolopoulos N. Multi-class ac- tive learning for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 2372-2379.
  • 10Zhu X J. Semi-supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison. USA. 2008. 11-13.

共引文献96

同被引文献59

  • 1SHANK D B, HOOGENBOOM G, McCLENDON R W. Dewpoint temperature prediction using artificial neural networks[J]. Journal of Applied Meteorology and Climatology, 2008, 47(6):1757-1769.
  • 2AGAM N, BERLINER P R. Dew formation and water vapor adsorption in semi-arid environments-a review[J]. Journal of Arid Environments, 2006, 65(4): 572-590.
  • 3PRABHA T, HOOGENBOOM G. Evaluation of the weather research and forecasting model for two frost events[J]. Computers and Electronics in Agriculture, 2008, 64(2):234-247.
  • 4QX/T 48-2007, 地面气象观测规范第4部分:天气现象观测[S]. 北京:中国标准出版社,2007.
  • 5TAKENAKA N, SODA H, SATO K, et al. Difference in amounts and composition of dew from different types of dew collectors[J]. Water Air and Soil Pollution, 2003, 147(1): 51-60.
  • 6NIKOLAYEV V S, SIBILLE P, BEYSENS D A. Coherent light transmission by a dew pattern[J]. Optics Communications, 1998, 150(1): 263-269.
  • 7ZHU L, CAO Z G. Salient region detection using Wasserstein distance measure based on nonlinear scale space[C]//MIPPR 2013: Proceedings of the 8th SPIE International Conference on Pattern Recognition and Computer Vision, SPIE 8919. Bellingham: SPIE, 2013: 89190A.
  • 8ACHANTA, R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
  • 9XU B, BU J, CHEN C, et al. Efficient manifold ranking for image retrieval[C]//SIGIR '11: Proceedings of 34th ACM SIGIR International Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 525-534.
  • 10XIAO Y, CAO Z, YUAN J. Entropic image thresholding based on GLGM histogram[J]. Pattern Recognition Letters, 2014, 40: 47-55.

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部