期刊文献+

基于节点相似性的WSNs故障检测方法研究 被引量:7

Research on WSNs fault detection method based on node similarity
下载PDF
导出
摘要 针对目前多数无线传感器网络分布式故障检测的算法都以假设故障节点数据为离群值为基础,存在局限性的问题。提出一种基于节点相似度比较的无线传感器网络故障检测方法,簇头节点根据簇内节点数据的时空相关性,进行节点相似性度量,实时调整节点可信水平,并采用最优函数计算出当前实验的最优阈值(0.8)进行故障节点的判断。通过仿真实验证明:针对不同的故障模型,算法保持了良好的故障检测能力,一定程度上解决通用性问题。 Aiming at present distributed fault detection algorithms for wireless sensor networks (WSNs)have assume that the fault node are based on outliers data,it have limitations.Present a method based on similarity comparison of nodes of WSNs fault detection,according to correlation of time and space of node data within the cluster,the cluster head nodes measure the similarity among cluster nodes,and adjust node confidence level real-time,calculate the optimal threshold value which is 0.8 by using optimal function in current experiments to judge fault node.Through simulation experiments show that aiming at different fault model,the algorithm keep in good ability of fault detection,and solve the problem of generality in a certain extent.
出处 《传感器与微系统》 CSCD 北大核心 2014年第4期10-13,共4页 Transducer and Microsystem Technologies
基金 国家科技支撑计划资助项目(2011BAJ03B13) 重庆市科技攻关项目(CSTC2012GG-YYJS40008)
关键词 相似性度量 时空相关性 可信水平 无线传感器网络 故障检测 similarity measurement time and space relativity confidence level WSNs fault detection
  • 相关文献

参考文献13

  • 1Vijay G, Ben Ali Bdira E, Ibnkahla M. Cognition in wireless sen- sor networks : A perspective [ J 1. IEEE Sensors Journal, 2011, 11 (3) :582 -592.
  • 2Zhang Y, Meratnia N, Havinga P. Outlier detection techniques for wireless sensor networks : A survey [ J ]. Communications Surveys & Tutorials,IEEE,2010,12(2) :159-170.
  • 3Xie M, Hu J, Tian B. Histogram-based online anomaly detection in hierarchical wireless sensor networks [ C ]//2012 IEEE 11 th Inter- national Conference on Trust, Security and Privacy in Computing and Communications ,2012 : 751 -759.
  • 4Farruggia A, Lo Re G, Ortolani M. Detecting faulty wireless sen- sor nodes through stochastic classification [ C ]//2011 IEEE Inter- national Conference on Pervasive Computing and Communications Workshops ( PERCOM Workshops), IEEE ,2011 : 148 -153.
  • 5Zhao X, Gao Z, Huang R, et al. A fault detection algorithm based on duster analysis in wireless sensor networks [ C ]//2011 IEEE Seventh International Conference on Mobile Ad-Hoc and Sensor Networks(MSN) ,2011:354 -355.
  • 6Zhang Y, Meratnia N, Havinga P J M. Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine [ J]. Ad Hoc Networks, 2013,11 (3) : 1062 - 1074.
  • 7Krishnamachari B, lyengar S. Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor network- s[ J]. IEEE Transactions on Computers ,2004,53 (3) :241 -250.
  • 8Chen J, Kher S, Somani A. Distributed fault detection of wireless sensor networks [ C ]//Proceedings of the 2006 Workshop on De- pendability Issues in Wireless Ad I-Ioc Networks and Sensor Net- works, ACM ,2006:65 -72.
  • 9Lee M H, Choi Y H. Fault detection of wireless sensor network- s[ J]. Computer Communications ,2008,31 ( 14 ) :3469 -3475.
  • 10熊翱,赵晓东,高志鹏,黄日茂,郭全.节点信誉相关的无线传感器网络故障检测[J].北京邮电大学学报,2012,35(1):41-45. 被引量:3

二级参考文献16

  • 1Krishnamachari B,Iyengar S.Distributed bayesian algo-rithms for fault-tolerant event region detection in wireless sensor networks[J].IEEE Transactions on Computers,2004,53(3):241-250.
  • 2Liu Kebin,Ma Qiang,Zhao Xibin,et al.Self-diagnosis for large scale wireless sensor networks[C] ∥INFOCOM 2011.Shanghai:2011Proceedings IEEE,2011:1539-1547.
  • 3Babaie S,Rezaie A R.DFDM:decentralized fault detection mechanism to improving fault management in wireless sensor networks[C] ∥20119 th International Conference on Reliability,Maintainability and Safety(ICRMS.2011).Guiyang:IEEE,2011:1026-1029.
  • 4Chen J R,Khe S,Somani A.Distributed fault detection of wireless sensor networks[C] ∥DIWANS’06.Los An-geles:ACM,2006:65-72.
  • 5Jiang P.A new method for node fault detection in wire-less sensor networks[J].Sensors,2009,9(2):1282-1294.
  • 6Choi Jae Young,Yim Sung Jib,Yoon Jae Huh,et al.A distributed adaptive scheme for detecting faults in wireless sensor networks[J].WSEAS Transactions on Communi-cations,2009,8(2):269-278.
  • 7Lee M H,Choi Y H.Fault detection of wireless sensor networks[J].Computer Communications,2008,31(14):3469-3475.
  • 8Yim Sung Jib,Choi Yoon Hwa.An adaptive fault-toler-ant event detection scheme for wireless sensor netwo-rks[J].Sensors,2010,10(3):2332-2347.
  • 9Chen J,Kher S,Somani A.Distributed fault detection ofwireless sensor networks[].ACM DIWANS’’.2006
  • 10Lee M H,Choi Y H.Fault detection of wireless sensornetworks[].Computer Communications.2008

共引文献10

同被引文献72

  • 1高建良,徐勇军,李晓维.基于加权中值的分布式传感器网络故障检测(英文)[J].软件学报,2007,18(5):1208-1217. 被引量:38
  • 2Wang Z, Wen O, Sun Y, et al. A fault detection scheme based on self--clustering nodes sets for wireless sensor networks [A]. 2012IEEE 12th International Conference on Computer and Informa- tion Technology (CIT) [C]. 2012:921-925.
  • 3Neelam Banerjee, Khilar P M. Distributed Intermittent Fault Diag- nosis in Wireless Sensor Networks using Clustering [A]. Interna- tional Conference on Integrated Intelligent Computing [C]. Banga lore, India, 20!0: 265-269.
  • 4Liu Y H, Zhou G M, Zhao J Z, et al. Long term large--scale sens ing in the forest= recent advances and future directions of Green Orbs [J]. Frontier of Computer Science in China= Special Issue on Cognitive Sense of China, 2010, 4 (3) : 334-338.
  • 5Shahid N, Naqvi I H, Qaisar S B. Characteristics and classification of outlier detection techniques for ireless sensor networks in harsh envi- ronments: a survey [ J ]. Artificial Intelligence Review, 2015,43 (2) :193-228.
  • 6Shahid N, Naqvi I H, Qaisar S B. Real time energy efficient ap- proach to Outlier & event detection in wireless sensor networks [ C ]// Proc of IEEE International Conference on Communication Systems. [ S. 1. ] : IEEE Press,2012 : 162-166.
  • 7张崇明.无线传感器网络中的数据异常检测和数据质量问题研究[D].上海:复旦大学,2005.
  • 8闫秋艳.煤矿概率流数据挖掘方法研究[D].徐州:中国矿业大学,2011.
  • 9李晶晶,李光强,赵地,肖昕.基于变点的时空异常模式研究[J].测绘科学,2009,34(2):28-29. 被引量:1
  • 10邹汉斌,周学清.基于聚类的模糊支持向量机入侵检测算法[J].情报杂志,2009,28(3):175-178. 被引量:3

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部