期刊文献+

基于PCA与BP混合神经网络算法的电子鼻系统 被引量:4

Electronic nose system based on PCA and BP hybrid neural network algorithm
下载PDF
导出
摘要 为了对食物品质进行非接触式评价,基于6种费加罗金属氧化物气体传感器阵列,通过由数据采集模块和微处理器模块组成的硬件设计方案,设计并研制了可对被测食物进行实时、无损检测的电子鼻系统。在软件设计方案上,该系统采用主成分分析(PCA)和反向传播(BP)混合神经网络模式,通过LabVIEW对气体"指纹信息"数据库进行分析。实验结果表明:该设计的电子鼻系统可以很好地区分不同种类的食醋,并提供了一种对食醋品质评价的便利方法。 For non contact food quality evaluation,through hardware design scheme consists of data acquisition module and microprocessor module,an electrical noise system is designed and developed based on six kinds of Figaro metal-oxide gas sensor array for real time food non-destructive examination (NDE).As for the software design scheme,the principal component analysis(PCA) and back propagation(BP) are utilized and used to analyze gas" fingerprint information" database by LabVIEW.The experimental results show that the designed electronic nose system can distinguish different types of vinegar accurately,and provide a convenient method for vinegar quality evaluation.
出处 《传感器与微系统》 CSCD 北大核心 2014年第4期90-92,共3页 Transducer and Microsystem Technologies
基金 全国教育信息技术研究"十二五"规划2013年度立项青年课题项目(136241402)
关键词 非接触式 气体传感器阵列 主成分分析 反向传播 混合神经网络 电子鼻 non-contact gas sensor array principal component analysis(PCA) back propagation(BP) hybrid neural network electronic nose
  • 相关文献

参考文献7

二级参考文献62

共引文献65

同被引文献27

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部