期刊文献+

基于分块的核窗宽调整mean-shift跟踪算法 被引量:1

Mean-shift Tracking Algorithm with Adjustive Bandwidth Based on Partition
下载PDF
导出
摘要 针对传统mean-shift算法核窗宽在跟踪过程中无法根据目标的大小变化进行相应调整问题。本文提出了一种基于分块的核窗宽调整mean-shift跟踪算法。该算法在跟踪窗口中心与目标形心定位的基础上,对跟踪窗进行分块,根据候选目标跟踪窗和分块目标跟踪窗中心距离的变化,对核窗宽的大小进行调整,使得跟踪窗口始终与跟踪目标的大小相匹配。实验表明算法对跟踪变大和变小的目标均取得了较好的跟踪效果。 The classical mean-shift tracking algorithm with the fixed bandwidth easily leads to some problems, such as the missing of the target and the mismatching of the tracking window and the target. A new mean-shift tracking method to adjust the tracking window based on partition is proposed. After the accurate location of the target centroid, the variation of the target's scale can be reflected by the variation of the distance between the target centroid and the block centroids, which can be used to adjust the tracking window. The proposed approach is illustrated by some tracking examples with valid results.
出处 《光电工程》 CAS CSCD 北大核心 2014年第4期41-46,53,共7页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61074016)
关键词 均值漂移 跟踪窗分块 核窗宽调整 目标跟踪算法 mean-shift partition of tracking window adjustive bandwidth tracking algorithm
  • 相关文献

参考文献12

  • 1Fukanaga K, Hostetler L D. The Estimation of the Gradient of a Density Function, With Applications in Pattern Recognition [J]. IEEE Transactions on Information Theory(S0018-9448), 1975, 21(1): 32240.
  • 2Cheng Y. Mean shift, Mode Seeking and Clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1995, 17(8): 790-799.
  • 3Comaniciu D, Ramesh V, Meer R Real-time Tracking of Non-rigid Objects Using Mean-shift [C]//IEEE Conference on Computer Vision and Pattern Recognition, South Caroline, USA, June 13-15, 2000, 2: 142-149.
  • 4Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking [C]//IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2003, 25(5): 564-575.
  • 5Collins R T. Mean-shift Blob Tracking Through Scale Space [C]//1EEE Computer Society Conference on Computer Vision and PatternRecognition, Wisconsin, USA, June 16-22, 2003, 2:234-240.
  • 6彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 7钱惠敏,茅耀斌,王执铨.自动选择跟踪窗尺度的Mean-Shift算法[J].中国图象图形学报,2007,12(2):245-249. 被引量:35
  • 8Seyed Amir Mohammadi, Sana Amoozegar, Alireza Jolfaei, et al. Enhanced Adaptive bandwidth tracking using mean shift Algorithm [C]//IEEE 3rd International Conference on Communication Software and Networks (ICCSN), Xi'an, China, May27-29, 2011: 494-498.
  • 9杨帆,郑春红,杨刚.基于UKF的窗口自适应Mean-Shift算法[J].计算机工程,2011,37(14):158-160. 被引量:2
  • 10WANG Changyou, ZHANG Haiqiang, YANG Fuping. An Adaptive Kernel Bandwidth Mean Shift Target Tracking Algorithm [C]// Control Engineering and Communication Technology (ICCECT), 2012 International Conference on Digital Object, Shenyang, China, Dec 7-9, 2012: 547-550.

二级参考文献45

  • 1彭宁嵩,杨杰,周大可,刘志.Mean-Shift跟踪算法中目标模型的自适应更新[J].数据采集与处理,2005,20(2):125-129. 被引量:23
  • 2王郑耀,程正兴,汤少杰.基于视觉特征的尺度空间信息量度量[J].中国图象图形学报,2005,10(7):922-928. 被引量:23
  • 3彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 4朱胜利,朱善安.核函数带宽自适应的Mean shift目标跟踪算法[J].光电工程,2006,33(8):11-16. 被引量:18
  • 5[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 6[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 7[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 8[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 9[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 10[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.

共引文献193

同被引文献16

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2Fukunage K, Hostetler L D. The estimation of the gradient of a density function with application in pattern recognition [ J ]. IEEE Trans on Information Theory, 1975,21 (1) :32-40.
  • 3Cheng Y. Mean-Shift,mode seeking, and clustering [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995,17 ( 8 ) :790- 799.
  • 4Collins R T. Mean-Shift blob tracking through scale space [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003 : 234-240.
  • 5Birchfield S T, Rangarajan S. Spatiograms versus histogrmns for re- gion based Iracking[ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005:20-26.
  • 6Collins R T, Liu Yanxi, Leordeanu M. Online selection of discrimi- native tracking featuresp[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2005,27( 10 ) : 1631 - 1643.
  • 7Jeyakar J, Babu R V, Ramakrishnan K R. Robust object tracking with back ground-weighted local kernels [ J ]. Computer Vision and Image Unclerstanding ,2008,112 (3) : 1 - 14.
  • 8Shen Chunhua, Brooks M J, Van den Hengel A. Fast global kernel density mode seeking: applications to localization and tracking [ J ]. I EEE Tran,~ on Image Processing,2007,16 (5) : 1457-1469.
  • 9Li Shuxiao, Wu Ou, Zhu Chengfei, et al. Visual object tracking u- sing spatial context information and global tracking skills [ J ]. Com- puter Vision and Image Understanding,2014,125 (10) : 1-15.
  • 10Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25(5 ):564-575.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部