期刊文献+

基于耦合过完备字典的红外云图超分辨率方法 被引量:3

A Method of Infrared Nephogram Super-resolution Based on Coupled Over-completed Dictionary
下载PDF
导出
摘要 针对红外云图分辨率低的问题,提出一种基于耦合过完备字典的超分辨率方法。在分析红外云图成像退化模型的基础上,建立了采用稀疏表示理论的超分辨率重构框架,首先随机抽取大量高、低分辨率云图的图像块,组成训练样本,经过字典学习获取针对高、低分辨率云图块的两个字典Dh和Dl,为保证对应的高、低分辨率云图块关于各自的字典具有相似的稀疏表示,提出一种耦合字典学习算法,该算法改变了字典对的更新策略,通过在每一步迭代中交替优化Dh和Dl,得到耦合的过完备字典对;最后对输入的低分辨率红外云图,采用最优正交匹配追踪算法(Optimized Orthogonal Matching Pursuit Algorithm,OOMP),得到满足重构约束的高分辨率云图。实验结果表明,本文方法与其他方法相比,红外云图重构质量有较为明显的改善,而且比同类方法具有更高的计算效率。 For the problem of low-resolution of infrared nephogram, a method of infrared nephogram super-resolution using coupled over-completed dictionary learning is presented. Based on the analysis of infrared nephogram degradation model, a super-resolution reconstruction framework is built with the sparse representation theory. First, consist a training sample by random sampling a large number of high-resolution and low-resolution sample nephogram patches. Then, construct a couple of dictionaries Dh and Di by dictionary training, to ensure that the corresponding high-resolution and low-resolution nephogram patches have a similar sparse representation on their dictionaries. We propose a coupled dictionary training method to change the strategy of dictionary update, and the coupled dictionaries were obtained by alternatively optimizing the Dh and Dl in each step of iterative. Finally, for the inputting low-resolution infrared nephogram, Optimized Orthogonal Matching Pursuit (OOMP) algorithm is used to achieve the high-resolution infrared nephogram which satisfies the reconstruction constraint. Numerous experiments show that the proposed algorithm can get a higher quality reconstructed infrared nephogram. Moreover, the algorithm efficiency is more effective than the other dictionary-learning algorithms.
出处 《光电工程》 CAS CSCD 北大核心 2014年第4期69-74,共6页 Opto-Electronic Engineering
基金 国家自然科学基金(61271399) 浙江省自然科学基金项目(Y1111061) 宁波市自然科学基金(2013A610055 2011A610192) 宁波市科技创新团队研究计划(2011B81002) 宁波大学重点学科项目(XKXL1306)
关键词 红外云图 超分辨率 耦合字典学习 稀疏表示 infrared nephogram super-resolution coupled dictionary learning sparse representation
  • 相关文献

参考文献2

二级参考文献20

  • 1Kiefer J, Wolfowitz J. Stochastic estimation of the maximum of a regression function[J]. Annals of Mathematical Statistics, 1952, 23: 462-466.
  • 2Sun H W, Wu Q. Least square regression with indefinite kernels and coefficient regularization [J]. Appl. Comput. Harmonica Analysis, 2011, 30: 96-109.
  • 3Vapnik V. The nature of statistical learning theory [M]. NewYork: John Wiley and Sons, 2005.
  • 4Ying Y, Zhou D X. Online regularized classification algorithms[J]. IEEE Trans. Inform. Theory 20061 52: 4775-4788.
  • 5Park S C, Park M K, Kang M G. Super-resolution image recon-struction: a technical overview[J]. IEEE Signal Processing Magazine, 2003,20 (3), 21 - 36.
  • 6Baker S, Kanade T. Limits on super-resolution and how to break them[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition ,2000:372 - 379.
  • 7Freeman W T, Jones R J, Pasztor E C. Example-based super- resolution[J]. IEEE Trans. on Computer Graphics and Appli- cation ,2002,22(2) :56 - 65.
  • 8Chang H, Yeung D Y, Xiong Y. Super-resolution through neighbor emhedding[C]// Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004 : 275-282.
  • 9Lin Z C, He J F, Tang X O. Limits of learning-based super-res- olution algorithms [J]. International Journal of Computer Vision ,2008,80(3) :406 - 420.
  • 10Yang J C, Wright J, Huang T, et al. Image super-resolution as sparse representation of raw image patches[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2008,1 -8.

共引文献23

同被引文献37

  • 1Takeda H, Milanfar P, Protter M, et al. Super-resolution without explicit subpixel motion estimation [J]. IEEE Transactions on Image Processing(S1057-7149), 2009, 19(9): 1958-1975.
  • 2Danielyan A, Foi A, Katkovnik V, et al. Image and video super-resolution via spatially adaptive block-matching filtering [C]// Proceedings of the International Workshop on Local and Non-Local Approximation in Image Processing, Lausanne, Switzerland, 2008: 1-8.
  • 3Protter M, Elad M, Takeda H, et al. Generalizing the non-local-means to super-resolution reconstruction [J]. IEEE Transactions on Image Processing(S1057-7149), 2009, 18(1): 36-51.
  • 4Protter M, Elad M. Super resolution with probabilistic motion estimation [J]. IEEE Transactions on Image Processing(S1057-7149), 2009, 18(8): 1899-1904.
  • 5YANG Jianchao, Wright J, HUANG Thomas, et al. Image super-resolution as sparse representation [J]. IEEE Transactions on Image Processing(S1057-7149), 2010, 19(11): 2861-2873.
  • 6YANG Jianchao, WANG Zhaowen, LIN Zhe, et al. Coupled dictionary training for image super-resolution [J]. IEEE Transactions on Image Processing(S1057-7149), 2012, 21(8): 3467-3478.
  • 7Peleg T, Elad M. A statistical prediction model based on sparse representations for single image super-resolution [J]. IEEE Transactions on Image Processing(S1057-7149), 2014, 23(6): 2569-2582.
  • 8Alexander S, Vrscay E, Tsurumi S.A simple, general model for the affine self-similarity of images [C]// Proceedings of the 5th International Conference on Image Analysis and Recognition, Póvoa de Varzim, Portugal, 2008: 192-203.
  • 9Ebrahimi M, Vrscay E.Examining the role of scale in the context of the non-local means filter [C]// Proceedings of the 5th International Conference on Image Analysis and Recognition, Póvoa de Varzim, Portugal, 2008: 170-181.
  • 10Lou Y, Favaro P, Soatto S. Nonlocal similarity image filtering [R]. Reports CAM, 2008: 8-26.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部