摘要
We present a design of terahertz modulator based on metamaterial absorber structure withvanadium dioxide (VO2), which can be controlled by optical-pumping or temperature variation. With the state change of VO2 from an insulator to a metal, the absorption has an abrupt increase from zero to 88.5%. In particular, the VO2 layer here is used to not only provide the modulating character, but also replace the metal ground plane to join the resonance operating as a metamaterial absorber. This work demonstrates a feasibility of VO2 in metamaterial perfect absorber, and exhibits potential applications in controllable terahertz devices.
We present a design of terahertz modulator based on metamaterial absorber structure withvanadium dioxide (VO2), which can be controlled by optical-pumping or temperature variation. With the state change of VO2 from an insulator to a metal, the absorption has an abrupt increase from zero to 88.5%. In particular, the VO2 layer here is used to not only provide the modulating character, but also replace the metal ground plane to join the resonance operating as a metamaterial absorber. This work demonstrates a feasibility of VO2 in metamaterial perfect absorber, and exhibits potential applications in controllable terahertz devices.
基金
supported by the National Basic Research Program of China under Grant No.2014CB339800
the National High Technology Research and Development Program of China under Grant No.2011AA010205
the National Natural Science Foundation of China under Grant No.61171027
the Tianjin Science and Technology Plan Project under Grant No.13RCGFGX01127