期刊文献+

非编码RNA的生物信息学研究方法:RNA结构预测及其应用 被引量:5

From sequence to structure:RNA secondary structure prediction methods and the applications
原文传递
导出
摘要 近10多年来的研究逐步揭示了RNA的各种生物学功能。RNA不仅是信息从DNA传递到蛋白质的中间体,还直接参与基因沉默、表观遗传学修饰等生物学过程。单链的RNA在体内通过碱基配对折叠成一定的二级结构。介绍了现在预测RNA二级结构的主要算法及其应用,其中包括基于热力学、同源比对和统计学习的各种算法,以及如何引入实验数据辅助预测。二级结构预测算法被广泛用于寻找RNA功能单元和预测新非编码RNA等各种问题。如何利用高通量实验数据帮助结构预测,探索长非编码RNA功能,研究RNA与蛋白质相互作用,是RNA二级结构预测算法和应用的一些前沿方向。 Researches in past 10 years uncovered various biological functions of RNA. Besides as the intermediate to transfer information from DNA to protein, RNA has been shown involved in gene silencing, epigenetic modifications and many other processes. RNAs are transcribed as single strand, fold into secondary structures by base pairing. Here different algorithms of RNA secondary structure prediction and their applications are reviewed, including thermodynamic algorithms, homologous alignments comparison, statistical learning and incorporating experimental data into prediction model. RNA secondary structure prediction algorithms are widely used in detection of RNA functional elements, identification of new non-coding RNAs and other researches. Challenges such as determination of secondary structures transcriptome wide under the help of high-throughput sequencing, assist to long non-coding RNA function discoveries and study of protein-RNA interactions will draw more attentions in this field.
出处 《生命科学》 CSCD 2014年第3期219-227,共9页 Chinese Bulletin of Life Sciences
基金 国家自然科学基金青年基金项目(31100601) 国家自然科学基金面上项目(31271402) 国家重点基础研究发展计划("973"项目)(2012CB316503) 国家高技术研究发展计划("863"项目)(2014AA021100) IBM基金 Bayer基金 罗氏基金
关键词 RNA二级结构预测 自由能 共突变 非编码RNA RNA secondary structure prediction free energy co-variation noncoding RNA
  • 相关文献

参考文献39

  • 1Goodarzzi H, Najafabadi HS, Oikonomou P, et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature, 2012, 485(7397): 264-8.
  • 2Parsyan A, Svitkin Y, Shahbazian D, et al. mRNA helicases: the tacticians of translational control. Nat Rev Mol Cell Biol, 2011, 12(4): 235-45.
  • 3Biirrneey E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146): 799-816.
  • 4Wan Y, Kertesz M, Spitale RC, et al. Understanding the transcriptome through RNA structure. Nat Rev Genet, 2011, 12(9): 641-55.
  • 5Deigan KE, Li TW, Mathews DH, et al. Accurate SHAPE- directed RNA structure determination. Proc Natl Acad Sci USA, 2009, 106(1): 97-102.
  • 6Zuker M, Sankoff D. RNA secondary structures and their prediction. Bull Mathem Biol, 1984, 46(4): 591-621.
  • 7Turner DH, Mathews DH. NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res, 2010, 38(Suppl 1): D280-2.
  • 8Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA websuite. Nucleic Acids Res, 2008, 36(Suppl 2): W70-W4.
  • 9Mccaskill JS. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 1990, 29(6-7): 1105-19.
  • 10Mathews DH. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA, 2004, 10(8): 1178-90.

同被引文献33

  • 1吕强,高彦明,钱培德.共享信息素矩阵:一种新的并行ACO方法[J].自动化学报,2007,33(4):418-421. 被引量:11
  • 2吴建祖.生物信息学分析实践[M].北京:科学出版社,2010.
  • 3BERMAN H M. The protein data bank: a historicalperspective [ J ]. Acta Crystallographica Section A:Foundations of Crystallography, 2007,64(1) : 88-95.
  • 4SATO K,HAMADA M, ASAI K,et al. Centroidfold: aweb server for RNA secondary structure prediction [ J ].Nucleic Acids Research, 2009’ 31 ( suppl 2) : W277 -W280.
  • 5HAMADA M, KIRYU H,SATO K,et al. Prediction ofRNA secondary structure using generalized centroidestimators[ J]. Bioinformatics, 2009, 25(4) : 465-473.
  • 6VOSS B,GIEGERICH R,REHMSMEIER M. Completeprobabilistic analysis of RNA shapes [ J ]. BMC Biology,2006,4(1) : 5.
  • 7STEFFEN P, VOSS B, REHMSMEIER M,et al.RNAshapes : an integrated RNA analysis package basedon abstract shapes [ J ]. Bioinformatics,2006,22 ( 4 ):500-503.
  • 8GIEGERICH R, VOSS B,REHMSMEIER M. Abstractshapes of RNA [ J ]. Nucleic Acids Research, 2004, 32(16) : 4843-4851.
  • 9JANSSEN S,GIEGERICH R. Faster computation of exactRNA shape probabilities [ J ]. Bioinformatics, 2010,26(5): 632-639.
  • 10REEDER J, GIEGERICH R. Consensus shapes: analternative to the sank off algorithm for RNA consensusstructure prediction[ J]. Bioinformatics, 2005,21 ( 17):3516-3523.

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部