期刊文献+

人眼像差校正线性二次高斯优化控制研究 被引量:1

Linear Quadratic Gaussian Optimal Control for Human Eye Aberration Correction
原文传递
导出
摘要 为获得清晰的高分辨率人眼眼底视网膜图像,自适应光学系统中变形镜必须能够实时跟踪并补偿人眼中随时间变化的像差信息。对波前像差特别是动态像差的校正能力不仅取决于变形镜等硬件的性能,还与自适应光学系统中的控制算法密切相关。在不加大硬件复杂度的基础上,介绍了一种基于Kalman滤波的线性二次高斯(LQG)人眼像差校正最优控制模型。首先分析了自适应光学系统的离散性,证明在离散模式下研究自适应光学系统的可行性;然后建立了基于Kalman滤波的LQG优化控制模型,并给出基于LQG优化控制的像差校正控制算法;最后通过仿真实验验证了基于LQG优化控制的像差校正算法对动态人眼波前像差校正的可行性和有效性。 In order to obtain a clear retinal image resolution of the human eye, the deformable mirror in adaptive optics system must be able to track and compensate the eyes aberration information in real time. The capability of wavefront aberration correction, especially the dynamic wavefront aberration, is not only depending on the performance of the deformation mirror and other hardwares, but also closely related to the control algorithm of adaptive optics system. Without increasing hardware complexity, a human eye aberration correction optimal control model based on Kalman filter and linear quadratic Gaussian (LQG) control is proposed. Firstly, the dispersion of adaptive optics system is analyzed and it is shown that the study of adaptive optics system under the discrete model is feasible. Then, the LQG optimal control model based on the Kalman filtering is established, and the aberration correction algorithm based on LQG optimal control model is proposed. Finally, the simulation experiment demonstrates the feasibility and effectiveness of the proposed algorithm.
出处 《激光与光电子学进展》 CSCD 北大核心 2014年第4期138-144,共7页 Laser & Optoelectronics Progress
基金 安徽省自然科学基金面上项目(1208085MA09) 安徽省高校省级优秀青年人才基金(2012SQRL151) 安徽省教育厅自然科学研究项目(KJ2011Z272)
关键词 成像系统 视觉光学 人眼像差校正 自适应光学 变形镜 线性二次高斯控制 imaging systems visual optics human eye aberration correction adaptive optics deformable mirror linear quadratic Gaussian control
  • 相关文献

参考文献4

二级参考文献69

共引文献66

同被引文献16

  • 1薛丽霞,饶学军,王成,胡弈云,凌宁,姜文汉.人眼高阶像差校正和视觉分析系统[J].光学学报,2007,27(5):893-897. 被引量:25
  • 2J Liang, B Grimm, S Goelz, et al.. Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave- front sensor[J]. J Opt Soc Am A, 1994, 11(7): 1949-1957.
  • 3J Liang, D R Williams, D T Miller. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. J Opt Soc Am A, 1997, 14(11): 2884-2892.
  • 4A Roorda. Adaptive optics for studying visual function: A comprehensive review[J]. Journal of Vision, 2011, 11(5): 1-21.
  • 5E J Fernendez, P M Prieto, P Artal. Binocular adaptive optics visual simulator[J]. Opt Lett, 2009, 34(17): 2628-2630.
  • 6R Sabesan, L Zheleznyak, G Yoon. Binocular visual performance and summation after correcting higher order aberrations[J]. Biomedical.Opt Express, 2012, 3(12): 3176-3189.
  • 7S Li, Y Xiong, J Li, et al.. Effects of monochromatic aberration on visual acuity using adaptive optics[J]. Optom Vis Sci, 2009, 86(7): 868- 874.
  • 8J Li, Y Xiong, N Wang, et al., Effects of spherical aberration on visual acuity at different contrasts[J]. J Cataract Refract Surg, 2009, 35 (8): 1389-1395.
  • 9B Yang, B Liang, L Liu, et al.. Contrast sensitivity function after correcting residual wavefront aberrations during RGP lens wear[J]. Optom Vis Sci, 91(10): 1271-1277.
  • 10H Hofer, L Chen, G Y Yoon, et al.. Improvement in retinal image quality with dynamic correction of the eye' s aberrations[J]. Opt Express, 2001, 8(11): 631-643.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部