期刊文献+

基于Matlab和VC混合编程的三面互检程序设计 被引量:1

Three-Flat Testing Program Design Based on Matlab and VC Mixed Programming
原文传递
导出
摘要 研究了光学平面绝对检验的干涉测量方法:三面互检法。该方法需要三个被测平面,两两组合测量,就能够得到被测平面在通过其中心两个垂直方向的线轮廓数据。根据Matlab和VC混合编程思想,设计了带界面的三面互检计算软件,能够对任何一台干涉仪所采集到的实验数据进行快速计算,并进行了实验验证,得到了所测干涉仪参考平晶的绝对面形,相对于Zygo软件计算误差为3%。 An interferometric method for the absolute testing of optical flats, three- flat testing, is studied. This method needs three flats, which are combined in pairs in different positions, and measurements yield a vertical profile of data and a horizontal data profile along the diameter of the reference flat. According to Matlab and VC mixed programming, three- flat test of mutual inspection procedures is designed to quickly calculate experimental data with the help of an interferometer. Experiments are done to achieve high accuracy flatness measurement, and the calculation error is 3% relative to the Zygo software.
作者 周游 刘世杰
出处 《激光与光电子学进展》 CSCD 北大核心 2014年第4期145-149,共5页 Laser & Optoelectronics Progress
关键词 测量 三面互检 MATLAB VC 混合编程 measurement three-flat testing Matlab VC mixed programming
  • 相关文献

参考文献8

  • 1G Sehulz, J Sehwider. Precise measurement of plainness[J]. Appl Opt, 1967, 6(6): 1077-1084.
  • 2G Sehulz, J Schwider. Establishing an optical flatness standard[J]. Appl Opt, 1971, 10(4): 929-934.
  • 3M Vannoni, G Molesini. Absolute planarity with three-flat test: an iterative approach with Zernike polynomials[J]. Opt Express, 2008, 16(1): 340-354.
  • 4徐晨,陈磊.光学平面绝对检验方法的研究[J].光学技术,2006,32(5):775-778. 被引量:15
  • 5Michael F Ktichel. A new approach to solve the three-flat problem[J]. Optik, 2001, 112(9): 381-391.
  • 6R Schreiner, J Schwider, N Linidlein. Absolute testing of the reference surface of a Fizeau interferometer through even/ odd decompositions[J]. Appl Opt, 2008, 47(32): 6134-6141.
  • 7Liu Xiaomei. Absolute Measurement of Optical Flat[D]. Nanjing: Nanjing University of Science & Technology, 2004.
  • 8董维国.深人浅出Matlab7.X混合编程[M].北京:机械工业出版社,2006.

二级参考文献13

  • 1Rayleigh L.Interference bands and their applications[J].Nature,1893,48:212-214.
  • 2Schulz G,Schwider J.Interferometric testing of smooth surfaces,Progress in Optics XⅢ[M].E.wolf,ed.Ch4 North-Holland,Amsterdam,1976.96-127.
  • 3Schulz G,Schwider J.Precise measurement of planness[J].Applied optics,1967,6(6):1077-1084.
  • 4Schulz G,Schwider J.Establishing an optical flatness[J].Applied optics,1971,10(4):929-934.
  • 5Fritz B S.Absolute calibration of an optical flat[J].Optical Engineering,1984,23(4):379-383.
  • 6Keenan P B.Pseudo-ShearInterferometry[J].SPIE,1984,123(4):2-9.
  • 7Grzanna J,Schulz G.Absolute testingof flatness standards at square-grid points[J].Optics communication,1990,77 (2,3):107-112.
  • 8Schulz G,Grzanna J.Absolute flatness testing by the rotation method with optimal measuring-error compensation[J].Applied Optics,1992,31(19):3767-3780.
  • 9Schulz G.Absolute flatness testing by an extended rotation method using two angle of roation[J].Applied Optics,1993,32(7):1055-1059.
  • 10Elssner K,Vogle A,Grzanna J,et al.Establishing a flatness standard[J].Applied Optics,1994,33(13):2437-2446.

共引文献14

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部