期刊文献+

具非齐次项拟线性双曲型方程组Cauchy问题的整体经典解

Global classical solutions to quasilinear hyperbolic systems with inhomogeneous terms
下载PDF
导出
摘要 考虑具非齐次项拟线性双曲型方程组Cauchy问题整体经典解的存在性 ,讨论了非线性右端项对经典解光滑性的影响 . In this paper we investigate the global existence of C1 solutions to the Cauchy problem for general inhomogeneous quasilinear hyperbolic systems with linear degenerate characteristics. Some applications are given.
作者 刘法贵
出处 《华北水利水电学院学报》 2000年第4期68-75,共8页 North China Institute of Water Conservancy and Hydroelectric Power
基金 国家自然科学基金项目资助! (199710 6 2 )
关键词 整体经典解 拟线性双曲型方程组 CAUCHY问题 global classical solution quasilinear hyperbolic system cauchy problem linear degenerate characteristics
  • 相关文献

参考文献18

  • 1[1]John, F. Formation of singularities in one - dimensionalnonlinear wave propagation [ J ]. Comm. Pure Appl.Math., 1974,27: 377 - 405.
  • 2[2]Liu Taiping. Development of singularites in the nonlinearwave for quasilinear partial differential equations[J]. J.Diff. Eqs., 1979,33:92-111.
  • 3[3]Li Tatsien. Global Classical Solutions for Quasilinear Hy-perbolic Systems[M]. Research in Applied Mathematics32, MASSON/John Wiley, 1994.
  • 4[4]Li Tatsien, Zhou Yi & Kong Dexing. Weak linear de-generacy and the global classical solutions for quasilinearhyperbolic systems[J]. Comm. in Partial Differential E-quations, 1994,19: 1263 - 1317.
  • 5[5]Li Tatsien, Kong Dexing and Zhou Yi. Global classicalsolutions to quasilinear hyperbolic systems with decay ini-tial data [J]. Nonlinear Analysis, Theory, Methods &Applications, 1997,28:1299 - 1332.
  • 6[6]Li Tatsien, Kong Dexing and Zhou Yi. Global classicalsolutions for non- strictly quasilinear hyperbolic systems[J]. Nonlinear Studies, 1996,3:203- 229.
  • 7[7]Li Tatsien & Kong Dexing. Initial value problem forgeneral quasilinear hyperbolic systems with characteristicswith constant multiplicity[J]. J. PDE, 1997,10:
  • 8[8]Hormander L.. The life - span os classical solutions ofnonlinear hyperbolic equations [ J ]. Institute Mittag -Leffter, Report No. 5,1985.
  • 9[9]Alinhac S.. Blowup for Nonlinear Hyperbolic Equations[M]. Progress in Nonlinear Differential Equations 17,Birkhauser, 1995.
  • 10[10]Kong Dexing. Maxiumm principles for quasilinear hyper-bolic systems and its applications [J]. to appear in Non-linear Analysis: TMA.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部