期刊文献+

基于听觉仿生模型的乐器识别 被引量:5

Musical instrument recognition based on the bionic auditory model
下载PDF
导出
摘要 提出了一个用于乐器识别的听觉仿生系统.该系统基于人类听觉系统中对声源识别起关键作用的耳蜗基底膜、内毛细胞、耳蜗核等部位的生理学功能设计出听觉仿生系统,并对乐器特征进行了提取,进而建立模拟听皮层功能的自组织特征映射神经网络,对构建的由7种乐器243个独奏乐曲样本组成的乐器数据库进行分类识别,乐器识别正确率在75%以上. This paper presents a bionic auditory system for musical instrument recognition. Based on the physiological structures of the human auditory system that are essential to sound source recognition, such as the basilar membrane,inner hair cells and cochlear nucleus, this system is designed to extract the features of the musical instruments, and a self-organizing mapping neural network (SOMNN) based on the function of auditory cortex is established to classify the large solo database, which consists of 243 acoustic and synthetic solo tones of seven different instruments. The instruments are recognized with an average success rate of over 75%. The result indicates that this bionic auditory system is high efficiency and high accuracy in musical instrument recognition.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期75-79,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 吉林省科技发展计划项目(20100458)
关键词 听觉仿生模型 乐器识别 自组织特征映射神经网络 bionic auditory model; musical instrument recognition; self- organizing mapping neural network
  • 相关文献

参考文献11

  • 1ERONEN A.Comparison of features for musical instrument recognition[J].Workshop on Signal Processing(or Audio andAcoustics(WASPAA),2001:19-22.
  • 2SUMIT KUMAR BANCHHOR,ARIF KHAN.Musical instrument recognition using spectrogram and autocorrelation.International Journal of Soft Computing and Engineering[J].2012,2(1):1-4.
  • 3林玉志.基于声学特征的乐器识别研究[D].广州:华南理工大学,,2012.
  • 4邓见光,潘晓衡,林玉志.基于声学特征的乐器识别综述[J].东莞理工学院学报,2012,19(3):58-64. 被引量:3
  • 5吴玺宏.人工神经网络听觉模型及其在说话人识别中的应用[D].北京:北京大学,1995.
  • 6MARK E BEAR,BRRY W CONNORS,MICHAEL A PARADISO.神经科学--探索脑(中文版)第2版[M].北京:高等教育出版社,2004:332-361.
  • 7陈世雄,宫琴,金慧君.用Gammatone滤波器组仿真人耳基底膜的特性[J].清华大学学报(自然科学版),2008,48(6):1044-1048. 被引量:33
  • 8MEDDIS R.Simulation of mechanical to neural transduction in the auditory receptor[J].Journal of the Acoustical Society ofAmerica,1986,79(3).702-711.
  • 9ALISTAIR MCEWAN,ANDREVAN SCHAIK.A silicon representation of the meddis inner hair cell model[J].Proceedings ofthe ICSC Symposia on Intelligent Systems &Application ,2000:1544-078.
  • 10TEUVO KOHONEN,The Self-organizing Maps[J].Proceedings of the IEEE,1990,78(9):1464-1480.

二级参考文献28

  • 1张奇,苏鸿根.基于支持向量机的乐器识别方法[J].计算机工程与应用,2004,40(18):99-101. 被引量:7
  • 2von Bekesy G. Concerning the pleasures of observing, and the mechanics of the inner ear pC]// Nobel Lectures in Physiology or Medicine. Amsterdam, Netherlands: Elsevier Science, 1964: 722-746.
  • 3Lyon R F, Mead C. An analog electronic cochlea [J]. Acoustics, Speech, and Signal Processing, 1988, 36(7) : 1119- 1134.
  • 4Patterson R D, Moore B C J. Auditory filters and excitation patterns as representations of frequency resolution [C]// Frequency Selectivity in Hearing. London: Academic Press, 1986: 123- 177.
  • 5Johannesma P I M. The pre-response stimulus ensemble of neurons in the cochlear nucleus [C]//Proc of the Symposium on Hearing Theory. Eindhoven, Netherlands : IPO, 1972: 58 - 69.
  • 6Glasberg B R, Moore B C J. Derivation of auditory filter shapes from notched noise data [J]. Hearing Research, 1990, 47(1): 103- 108.
  • 7Martin C. Modelling auditory processing and organisation [D]. Sheffield, Britain: University of Sheffield, 1991.
  • 8Greenwood D D. A Cochlear frequency-position function for several species-29 years later [J]. J Acoust Soc Am, 1990, 87(6): 2592- 2605.
  • 9Bozena Kostek. Musical instrument classification and duet analysis employing music information retrieval techniques [ J ]. Proceedings of the IEEE, 2004, 92(4) : 712 -729.
  • 10Herrera P, Peeters G, Dubnov S. Automatic classification of musical instrument sounds[J]. Journal of new music research, 2003, 32( 1 ) : 3 -21.

共引文献34

同被引文献50

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部