期刊文献+

模糊Quantale上的模糊同余关系及其同构定理

Fuzzy congruence relations and isomorphism theorems on fuzzy Quantales
下载PDF
导出
摘要 在模糊Quantale上引入模糊同余关系的概念,证明了模糊Quantale上的模糊同余关系与模糊核映射是一一对应的,而且模糊同余关系之集模糊序同构于该模糊Quantale上的模糊核映射之集.基于模糊同余关系引入商模糊Quantale的概念,证明了任一模糊Quantale同余关系诱导的模糊Quantale商与基于该模糊同余关系的商模糊Quantale是同构的. The concept of fuzzy congruence relations on fuzzy Quantales is introduced. It is proved that there is a one to one correspondence between the fuzzy congruence relations and fuzzy nuclei on a fuzzy Quantale, and the fuzzy poser of all fuzzy congruence relations is isomorphic to the fuzzy poser of all fuzzy nuclei on a given fuzzy Quantale. Based on the fuzzy congruence relation, the concept of quotient fuzzy Quantale is given. It is proved that the fuzzy quantic quotient in- duced by a fuzzy Quantale congruence relation is isomorphic to the quotient fuzzy Quantale based on the fuzzy congruence relation.
作者 贾巧会 刘妮
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期18-22,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11001158) 中央高校基本科研业务费专项资金项目(GK201002025)
关键词 模糊偏序集 模糊Quantale 模糊同余关系 模糊核映射 fuzzy poset fuzzy Quantale fuzzy congruence relation fuzzy nucleus
  • 相关文献

参考文献10

  • 1Mulvey C J.&[J].Rendiconti del circolo matematico di palermo Ⅱ,1986,12(2):99-104.
  • 2Rosenthal K I.Quantales and their applications[M].New York:Longman Scientific and Technical,1990.
  • 3刘敏,赵彬.模糊完备格上的模糊同余关系[J].陕西师范大学学报(自然科学版),2013,41(1):5-9. 被引量:1
  • 4Petr Hájek.Metamathematics of fuzzy logic[M].Dordrecht:Kluwer Academic Publishers,1998.
  • 5Zhang Qiye,Fan Lei.Continuity in quantitative domains[J].Fuzzy Sets and Systems,2005,154(1):118-131.
  • 6Yao Wei.Quantitative domains via fuzzy sets:Part Ⅰ:Continuity of fuzzy directed complete poset[J].Fuzzy Sets and Systems,2010,161(7):983-987.
  • 7Yao Wei,Lu Lingxia.Fuzzy Galois connections on fuzzy posets[J].Mathematical Logic Quarterly,2009,55 (1):105-112.
  • 8Stubbe I.Categorical structures enriched in a quantaloid:tensored and cotensored categories[J].Theory and Applications of Categories,2006,16 (14):283-306.
  • 9Lai Hongliang,Zhang Dexue.Concept lattice of fuzzy contexts:formal concept analysis vs.rough set theory[J].International Journal of Approximate Reasoning,2009,50(5):696-707.
  • 10Bělochávek R.Fuzzy relational systems:foundations and principles[M].New York:Kluwer Academic Publishers,Plenum Publishers,2002:203-213.

二级参考文献12

  • 1Wagner K R. Solving recursive domain equations with enriched categories[D].Pittsburgh:Carnegie-Mellon University,School of Computer Science,1994.
  • 2Wagner K R. Liminf convergence in Ω-categories[J].Theoretical Computer Science,1997,(1/2):61-104.doi:10.1016/S0304-3975(96)00223-X.
  • 3Lai Hongliang,Zhang Dexue. Many-valued complete distributivity[DB/OL].http://arxiv.org/abs/math/0603590,2012.
  • 4Lai Hongliang,Zhang Dexue. Complete and directed complete Ω-categories[J].Theoretical Computer Science,2007,(1/3):1-25.
  • 5Fan Lei. A new approach to quantitative domain theory[J].Electronic Notes in Theoretical Computer Science,2001.77-87.
  • 6Yao Wei. Quantitative domains via fuzzy sets:Part Ⅰ:continuity of fuzzy directed complete posets[J].Fuzzy Sets and Systems,2010,(07):983-987.
  • 7Zhang Qiye,Fan Lei. Continuity in quantitative domains[J].Fuzzy Sets and Systems,2005,(01):118-131.
  • 8Zhang Qiye,Xie Weixian,Fan Lei. Fuzzy complete lattices[J].Fuzzy Sets and Systems,2009,(16):2275-2291.
  • 9Bělohlávek R. Fuzzy relational systems:Foundations and principles[M].New York:Kluwer Academic Publishers,Plenum Publishers,2002.203-213.
  • 10郑崇友;樊磊;崔宏斌.Frame与连续格[M]北京:首都师范大学出版社,199484-91.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部