期刊文献+

储层温度对CO_2矿物封存的影响 被引量:3

The influence on CO_2 mineral sequestration of reservoir temperature
下载PDF
导出
摘要 在CO2地质储存中,储层温度是影响CO2矿物储存量的因素之一。文章选取美国Gulf Coast地区的资料,并设置6种温度敏感性分析方案,使用TOUGHREACT/ECO2N软件模拟分析了温度变化对CO2矿物捕集的影响,得出以下结论:长石类矿物、高岭石、绿泥石是主要的溶解矿物,方解石并非主要的溶解矿物;主要固碳矿物为铁白云石和片钠铝石,两者与绿泥石存在较好的相关性,并且沉淀量与温度变化正相关;CO2体积分数随时间变化幅度和矿物捕获总量均与温度呈正相关。通过分析储层温度对矿物捕获CO2的影响,为选取CO2储层提供温度上的考量。 In the mineral reserves. geological storage of carbon dioxide, reservoir temperature is one of the factors affecting CO2 Based on the information of Gulf Coast, United States, this paper sets up 6 kinds of temperature sensitivity analysis schemes to simulate and analyze the effect of temperature on CO2 mineral trapping with TOUGHREACT/ECO2N software. The results indicate that feldspar mineral and kaolinite and chlorite are the main dissolved minerals and calcite is not the main dissolved mineral. Ankerite and dawsonite are the major carbon sequestration minerals. Thay are in a good correlation with chlorite and their amount of precipitation will increase as temperature rises. Time-varying amplitude of CO2 volume fraction and mineral capture aggregates are positively correlated with temperature. The analysis results of influence of reservoir temperature on CO2 mineral capture may provide the temperature consideration for selection of CO2 reservoir.
出处 《水文地质工程地质》 CAS CSCD 北大核心 2014年第1期101-105,共5页 Hydrogeology & Engineering Geology
基金 国土资源部公益性行业科研专项项目(201211063)
关键词 温度 CO2矿物封存 TOUGHREACT GulfCoast temperature CO2 mineral sequestration TOUGHREACT Gulf Coast
  • 相关文献

参考文献16

二级参考文献168

共引文献160

同被引文献30

  • 1毛世德.An Improved Model for Calculating CO_2 Solubility in Aqueous NaCl Solutions and the Application to CO_2-H_2O-NaCl Fluid Inclusions[J].矿物学报,2013,33(S2):480-480. 被引量:7
  • 2李小春,刘延锋,白冰,方志明.中国深部咸水含水层CO_2储存优先区域选择[J].岩石力学与工程学报,2006,25(5):963-968. 被引量:108
  • 3孙枢.CO_2地下封存的地质学问题及其对减缓气候变化的意义[J].中国基础科学,2006,8(3):17-22. 被引量:59
  • 4Pruess K, Oldenhurg C, Moridis (L LBNL-43134. 2012. TOUGH2 user's guide, Version 2.0. University of California: Lawrence Berkeley Na- tional Laboratory.
  • 5Pruess K, Gare 'a J, Kovseek T, Oldenburg C, Rutqvist J. 2004. Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy, 29(9-10) :1431-1444.
  • 6Pascal Audigane, Irina Gaus, Isabelle Czerniehowski-Lauriol, Karsten Pruess, Xu T F. 2007. Two-dimensional reactive transport modeling of COz injection in a saline aquifer at the sleipner site. American Journal of Science, 307 ( 7 ) : 974-1008.
  • 7Xu T F, Sonnenthal E, Spycher N, Pruess K. 2006. Toughreact-a simu- lation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geo- thermal injeetivity and CO2 geological sequestration. Computers & Geoscienees, 32 (2) : 145-165.
  • 8Xu T F, Spycher N, Sonnenthal E L, Zhang G. 2011a. Toughreact Ver- sion 2.0: A simulator for subsurface reactive transport under non-i- sothermal multiphase flow conditions. Computers & Geosciences, 37 (6) :763-774.
  • 9Xu T F, Zheng L G, Tian H L. 2011b. Reactive transport modeling for CO2 geological sequestration. Journal of Petroleum Science and Engi-neering, 78:765-777.
  • 10岳高凡.典型二氧化碳地质储层中二氧化碳不同形式储存量转化预测[D].长春:吉林大学,2014.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部