期刊文献+

半线性空间的基与基数 被引量:2

Bases and the Cardinality of a Basis in Semilinear Spaces
下载PDF
导出
摘要 半环上的线性代数技术在选择理论,分离事件网络模型,以及半环是除半环时在图论上都有重要的应用.然而不同于经典线性代数的是,半环上L-半线性空间vn中不同基可能有不同的数量的元素.主要讨论了交换的零和自由半环上L-半线性空间vn中的基数问题.首先给出每组基有相同基数的充要条件,回答了A.Di Nola等在其论文(Fuzzy Sets and Systems,2007,158:1-22)中提出的开问题.其次证明文中给出的充要条件和已有充要条件之间的关系.最后证明在一些交换零和自由半环上不同基也有相同的基数. The techniques of linear algebra over a semiring have important applications in optimization theory, models of discrete e- vent networks, and graph theory, particularly when the semiring is in fact a semifiled. But different with classcal linear algebra, differ- ent basis may have different number elements in L-semilinear space Vn. In this paper, we discuss the cardinality of a basis in an B semilinear space Vn. First, we give a necessary and sufficient condition for all the bases to have the same cardinality and give an an- swer to the open question proposed in paper( Fuzzy Sets and Systems ,2007,158:1-22). Then we discuss the relationship between the necessary and sufficient condition in this paper and the others. In the end, we present that over some commutative zerosumfree semir- ings, all the bases also have the same cardinality.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期143-147,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11171242) 教育部博士点基金(20105134110002) 四川省自然科学青年基金(2011JQ0055) 四川省教育厅基金(13ZB0165)资助项目
关键词 零和自由 基数 zerosumfree basis cardinality of a basis
  • 相关文献

参考文献27

  • 1Cuninghame- Green R A, Minimax A. Minimax Algebra (Lecture Notes in Economics and Mathematical Systems)[ M ]. Berlin:Springer - Vedag, 1979.
  • 2Butkovi P, Hevery F. A condition for the strong regularity of matrices in the minimax algebra[J]. Discrete Appl Math,1985 ,15 :133 -155.
  • 3Francis R L, McGinnis L F, White J A. Locational analysis [ J ]. European J Oper Res, 1983,12:220 - 252.
  • 4Carr6 B A. Graphs and Networks[ M]. Oxford:Oxford University Press,1979.
  • 5Karp R M. A characterization of the minimum cycle mean in a digraph[ J]. Discrete Math, 1978,23:309 -311.
  • 6Cuninghame- Green R A, Huisman F. Convergence problems in minimax algebra[ J]. J Math Anal Appl,1982,88:196 -203.
  • 7Butkovi5 P, Cuninghame - Green R A. On the regularity of matrices in min - algebra [ J ]. Linear Algebra and Its Applications, 1991,145:127 - 139.
  • 8Perfdieva I. Fuzzy function as an appr(rdmate solution to a system (ff fuzzy relation equations[J]. Fuzzy Sets and Systems,2ff)4,147:363-383.
  • 9Perfilieva I. Semi -linear spaces[ C]//Noguchi H, Ishii H, et al. Proc of Seventh Czech -Japanese Seminar on Data Analysis and Decision Making under Uncertainty. Hyogo: Japan,2004 : 127 - 130.
  • 10Perfilieva I, Novk V. System of fuzzy relation equations as a continuous model of if - then rules [ J ]. Information Sciences, 2007,177:3218 - 3227.

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部