期刊文献+

基于光电传感器的目标轮廓提取及其识别

Object Profile Extraction and Recognition Based on Photoelectric Sensors
下载PDF
导出
摘要 针对物体外形轮廓特征,给出一种基于主动式光电传感器的轮廓特征提取方法,该方法是通过物体经过传感器组视场时各传感器输出状态来获取特征信息;并结合稀疏表示理论,提出一种基于稀疏表示的目标轮廓识别算法,该算法是将测试样本投影到稀疏域,依据系数的稀疏性对测试样本进行分类。数值仿真与实验结果表明:采用光电传感器组获取的信息能够有效地描述物体;且通过本文算法对不同类型物体进行分类,具有良好的识别效果;对不同条件下获得的特征样本进行分类时,具有良好的鲁棒性。 According to profile features of an object,a kind of object profile extraction system composed of active photoelectric sensors was proposed, which acquired the feature information by output state of sensors when objects passed through sensors field of view, and an algorithm of profile recognition which combined the theory of sparse representation was proposed. As the first step, the algorithm projected the testing samples into sparse domain, which recognized the samples according to coefficient sparsity. Numerical simulation and experiments showed the information obtained from photoelectric sensor group can effectively describe objects, and the algorithm had good classification effect and robustness under different conditions.
出处 《宿州学院学报》 2014年第2期79-82,共4页 Journal of Suzhou University
基金 安徽高校省级自然科学研究一般项目"基于WSN和压缩感知的目标轮廓识别研究"(KJ2013B224)
关键词 轮廓特征提取 稀疏表示 轮廓识别 无人值守地面传感器 profile feature extraction sparse representation profiling classification unattended ground sensor
  • 相关文献

参考文献10

  • 1David J Russomanno, Srikan Chari, Kenny Emmanuel, et al. Testing and Evaluation of Profiling Sensors for Perimeter Security[J]. ITEA, 2010,31 (1): 121-130.
  • 2Ronald B Sartain, Keith Aliberti, Troy Alexander, et al. Long-wave infrared profile feature extractor (PFx) sensor [C]//SPIE Defense, Security, and Sensing. Interna- tional Society for Optics and Photonics:Orlando,Florida, USA, 2009 : 733311-733311-7.
  • 3Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52 (4) : 1289-1306.
  • 4Candes E. Compressive sampling[C]//Proceedings oh the International Congress of Mathematicians. Madrid, 2006 : 1433-1452.
  • 5John Wright, Allen Y. Yang,Arvind Ganesh S, et al. Ro- bust Face Recognition via Sparse Representation[J]. IEEE Transactions, 2009,31 (2) : 1-18.
  • 6Katia Estabridis. Automatic target recognition via sparse representations [C]//SPIE Defense, Security, and Sens- ing. International Society for Optics and Photonics. Orlan- do, Florida, 2010: 769600-769600-9.
  • 7Candes E Tao T. Near optimal signal recovery from ran- dom projections : Universal encoding strategies [J]. IEEE Transactions on Information Theory, 2006,52 (12) : 5406- 5425.
  • 8Candes E,Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51 (12) :4203-4215.
  • 9Chen S B ,Donoho D L ,Saunders M A. Atomic decomposi- tion by basis pursuit[J]. SIAM Journal on Scientific Com- puting, 1998,20 (1) : 33-61.
  • 10Donoho D L,Elad M,Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006,52(1):6-18.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部