期刊文献+

基于Apriori算法和关联度指标的购物篮分析 被引量:5

下载PDF
导出
摘要 超市中不同的商品被购买的时间、数量等特征都呈现出自己独特的规律。通过对消费者群体购物记录进行分析,利用Apriori算法找出同时被购买次数较多商品,定义关联度指标,计算它们的关联度系数,挖掘出它们之间的联系。分析购物篮,对这些商品之间的联系进行整合处理,并提出合理可行的销售策略,以此来促进销量,提高收益。
作者 余文礼
出处 《科技视界》 2014年第4期56-57,共2页 Science & Technology Vision
  • 相关文献

参考文献6

二级参考文献20

  • 1姚俊.浅谈关联规则挖掘[J].信息技术,2005,29(6):85-87. 被引量:7
  • 2张红梅,夏南强.数据挖掘技术在零售业中的应用[J].经济师,2006(1):48-49. 被引量:8
  • 3梁志恒.基于小型超市POS系统数据挖掘分析方法的应用[J].沈阳师范大学学报(自然科学版),2006,24(1):47-50. 被引量:5
  • 4RASKESH AGRAWAL,TOMASZ IMIEIINSKI,ARUN SWAMI.Mining Association Rules between Sets of Items in Large Databases[Z].In:Proc of ACM SIGMOD Conference on Management of Data,Washington DC,1993.207 -216.
  • 5BRIN S,MOTWANI R,SILVERSTEIN C.Beyond Market Basket:Generalizing Association Rules to Correlations[Z].In Proc.1997 ACM-SIGMOD Int.Conf.Management of Data (SIGMOD97),Tucson,AZ,1997.265-276.
  • 6AHMED K M,EL-MAKKY N M,TAHA Y.A Note on Beyond Market Basket:Generalizing Association Rules to Correlations[J].SIGKDD Exploration,2000,(1):46-48.
  • 7AGRAWAL R,SRIKANT R.Fast Algorithms for Mining Association Rules in Large Database[Z].In research Report RJ9839,IBM Almaden Research Center,San Jose,CA,June,1994.
  • 8HAN JIAWEI,KAMBER M.Data Mining - Concepts and Techniques[M].Sam Francisco:Morgan Kaufmann Publishers,2001.232-236.
  • 9王德兴 胡学钢 王浩.基于概念格兴趣度加权的关联规则挖掘模型研究[J].南京大学学报:自然科学版,2002,:89-95.
  • 10李新良,陈湘涛.数据挖掘中关联规则算法的研究[J].计算机工程与科学,2007,29(12):111-113. 被引量:16

共引文献217

同被引文献29

  • 1何军,刘红岩,杜小勇.挖掘多关系关联规则[J].软件学报,2007,18(11):2752-2765. 被引量:38
  • 2Woo Jongwook, Xu Yuhang. Market basket analysis algorithm with Map/Reduce of cloud computing[ C ]//Proc of the 2011 international conference on parallel and distributed processing techniques and applications. Las Vegas : IEEE ,2011 : 1 $-21.
  • 3Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [ C ]//Proceedings ofthe 1993 ACM SIGMOD conference. Washington DC, USA: ACM, 1993:207-216.
  • 4Lanm Qihua, Zhang Defu, Wu Bo. A new algorithm for fre- quent itemsets mining based on Apriori and FP-Tree [ C ]// Proc of global congress on intelligent systems. Xiamen, China: Computer Science ,2009:360-364.
  • 5He Chen, Weitzel D, Swanson D, et al. HOG : distributed Ha- doop MapReduce on the grid[ C]//Proc of 2012 SC compan- ion:high performance computing, networking storage and anM- ysis. Salt Lake City : IEEE ,2012 : 1276-1283.
  • 6Li Ning, Zeng Li, He Qing, et al. Parallel implementation of Apriori algorithm based on MapReduce [ C ]//Proc of 2012 13th ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed com- puting. Kyoto : IEEE ,2012:236-241.
  • 7Wasi-ur - Rahman M, Islam N S, Lu Xiaoyi, et al. High- per- formance RDMA- based design of Hadoop MapReduce over InfiniBand [ C ]//Proc of 2013 IEEE 27th international sympo- sium on parallel & distributed processing workshops and PhD forum, Cambridge, MA : IEEE, 2013 : 1908-1917.
  • 8丁卫平.关联规则挖掘Apriori算法的改进及其应用研究[J].南通大学学报(自然科学版),2008,7(1):50-53. 被引量:7
  • 9钱光超,贾瑞玉,张然,李龙澍.Apriori算法的一种优化方法[J].计算机工程,2008,34(23):196-198. 被引量:47
  • 10刘华婷,郭仁祥,姜浩.关联规则挖掘Apriori算法的研究与改进[J].计算机应用与软件,2009,26(1):146-149. 被引量:119

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部