期刊文献+

澳大利亚烟煤热解的拉曼光谱研究 被引量:26

Raman spectroscopic study on the pyrolysis of Australian bituminous coal
下载PDF
导出
摘要 采用拉曼光谱考察了澳大利亚烟煤在常压、温度为298~1 473K条件下,不同热解气氛(Ar和N2)下的热解性能.结合AD/Aall 、AG/All、WG以及PG-PD等表征参数分析发现,澳大利亚烟煤的热解可以分为三个阶段:298~ 873 K为固有小分子和大分子键能较弱处断裂分解产生的小分子化合物的析出沉积和挥发;873~1 273 K为大分子化合物裂解挥发和炭化;1 273~1 473K为焦炭的石墨化.在N2和Ar气氛经1473 K热处理后,焦炭的不同杂化结构的碳相对含量呈现明显差异.不同保温时间下,其煤焦碳结构演变趋势相似,但保温时间越长,越有利于小分子挥发分在较低温度的挥发. Raman spectroscopy was applied to investigate the temperature dependent pyrolysis of Australian bituminous coal from 298 to 1 473 K in argon and nitrogen atmospheres. The results indicated that the pyrolysis of Australian bituminous coal can be divided into three stages : 298 - 873 K, precipitation and volatilization of small molecule compounds (original in coal or decomposed by heat treatment) ; 873 - 1 273 K, cracking and volatilization of macromolecular compounds; 1 273 -1 473 K, graphitization of coke. After annealing at 1 473 K, the ordered carbon content of coke is significantly related to the atmosphere of nitrogen or argon; nitrogen is conducive to the pyrolysis of coal. Annealing or holding time exhibits little effect on coal pyrolysis and coke structure evolution; however, long holding time is helpful for the volatilization of small molecules at low temperature.
出处 《燃料化学学报》 EI CAS CSCD 北大核心 2014年第3期270-276,共7页 Journal of Fuel Chemistry and Technology
基金 国家自然科学基金重点项目(50932005) 国家自然科学基金(20973107,40973046) 上海市科委科技基金(12520709200) 澳大利亚CSIRO Minerals Down Under Flagship资助
关键词 拉曼光谱 热解 澳大利亚烟煤 气氛 保温时间 Raman spectroscopy pyrolysis Australian bituminous coal atmosphere heat holding time
  • 相关文献

参考文献30

  • 1KAWAKAMI M, KANBA K, SATO K, TAKENAKA T, GUPTA S, CHANDRATILLEKE R, SAHAJWALLA V. Characterization of thermal annealing effects on the evolution of coke carbon structure using Raman spectroscopy and X-ray diffraction[J]. ISU Int, 2008, 46 (8) : 1165-1170.
  • 2高晋生.煤的热解、炼焦和煤焦油加工[M].北京:化学工业出版社,2009.
  • 3SONIBARE 0 0, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction Raman and FTIR spectroscopy[J].Energy, 2010,35(12): 5347-5353.
  • 4SUGGATE R P, DICKINSON W W. Carbon NMR of coals: The effects of coal type and rank] J J. IntJ Coal Geol, 2004, 57 ( I ) : 1-22.
  • 5SAKAWA M, UNO K, HARA Y. E. s. r. study offormation of coke texture[J]. Fuel, 1983,62(5): 585-590.
  • 6TANG L, GUPTA R, SHENG C, WALL T. The char structure characterization from the coal reflectogram[J]. Fuel, 2005, 84(10): 1268- 1276.
  • 7FERRARI A C, ROBERTSONJ. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61 (20): 14095-14107.
  • 8GUEDES A, VALENTIM B, PRIETO, RODRIGUES S, NORONHA F. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite[J]. IntJ Coal Geol, 2010, 83(4): 415-422.
  • 9TUINSTRA F, KOENIGJ L. Raman spectrum of graphiteJ J].J Chern Phys, 1970,53: 1126-1130.
  • 10FRIEDEL R A, CARLSON G L. Difficult carbonaceous materials and their infra-red and Raman spectra. Reassignments for coal spectraJ J]. Fuel, 1971, 51 (3) : 194-198.

二级参考文献16

共引文献85

同被引文献303

引证文献26

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部