期刊文献+

RGO/C_3N_4复合材料的制备及可见光催化性能 被引量:18

Preparation and Visible Light Photocatalytic Properties of RGO/C_3N_4 Composites
下载PDF
导出
摘要 通过半封闭一步热裂解法和改进的Hummers法分别制备了类石墨氮化碳(C3N4)和氧化石墨烯(GO),再利用光还原方法制得还原氧化石墨烯/氮化碳(RGO/C3N4)复合材料。采用X射线衍射(XRD),场发射扫描电镜(FESEM),X射线光电子能谱(XPS),紫外-可见漫反射吸收光谱(DRS),光致荧光(PL)和傅里叶变换红外光谱(FTIR)等测试技术对复合材料进行表征。以罗丹明B(RhB)为探针分子在可见光下考察RGO/C3N4复合材料的光催化活性,结果表明:RGO的引入显著提高了C3N4的光催化活性,且6.0%RGO/C3N4复合物的光催化活性最高,可能的原因是RGO具有优良的接受和传导电子性能,抑制了C3N4光生电子-空穴的复合机率,进而提高了光催化活性。 The graphitic-like carbon nitride (C3N4) and graphene oxide (GO) were respectively prepared by one step semi-enclosed pyrolysis and improved Hummers method. Following the reduced graphene oxide/C3N4 (RGO/C3N4) composites were fabricated via a photo-reduction route. The as-prepared samples were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance absorption spectroscopy (DRS), Photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The photocatalytic activity of samples was evaluated under visible light irradiation using Rhodamine B(RhB) as probe molecule. The experimental results show that the introduction of RGO could considerably enhance photocatalytic activity, and the 6.0% RGO/C3N4 composite exhibits the best photocatalytic performance. The significantly enhanced photocatalytic activity for the present composite originates from the electron-accepting and electron-transportation property of RGO, which inhibits the recombination rate of photogenerated electron-hole pairs.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2014年第4期821-827,共7页 Chinese Journal of Inorganic Chemistry
基金 武汉轻工大学引进(培养)人才科研启动项目(2012RZ12) 武汉轻工大学大学生创新创业训练计划资助项目(No.CXXL2013009)
关键词 RGO C3N4复合材料 光还原 光催化 降解 罗丹明B RGO/C3N4 composites photoreduction photocatalysis degradation rhodamine B
  • 相关文献

参考文献27

  • 1Hu X L,Li G S,Yu J C.Langmuir,2010,26:3031-3039.
  • 2Chen C C,Ma W H,Zhao J C.Chem.Soc.Rev.,2010,39:4206-4219.
  • 3Chen X B,Shen S H,Guo L J,et al.Chem.Rev.,2010,110:6503-6570.
  • 4Lu S Y,Wu D,Wang Q L,et al.Chemosphere,2011,82:1215-1224.
  • 5Chen X B,Mao S S.Chem.Rev.,2007,107:2891-2959.
  • 6Wang H,Gao J,Guo T Q,et al.Chem.Commun.,2012,48:275-277.
  • 7Bi Y P,Ouyan S X,Umezawa N,et al.J.Am.Chem.Soc.,2011,133:6490-6492.
  • 8Shang M,Wang W Z,Zhang L.J.Hazard.Mater.,2009,167:803-809.
  • 9Yan S C,Li Z S,Zou Z G.Langmuir,2009,25:10397-10401.
  • 10LiuJ H,Zhang T K,Wang Z C,et al.J.Mater.Chem.,2011,21:14398-14401.

二级参考文献67

  • 1Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemannt, D. W. Chem. Rev. 1995, 95, 69.
  • 2Raffainer, I. I.; von Rudolf, R. P. Ind. Eng. Chem. Res. 2001, 40,1083.
  • 3Agrios, A. G.; Pichat, P. J. Appl. Electrochem. 2005, 35, 655.
  • 4Kudo, A.; Hijii, S. Chem. Lett. 1999, 28, 1103.
  • 5Tang, J. W.; Zou, Z. G.; Ye, J. H. Catal. Lett. 2004, 92, 53.
  • 6Zhang, C.; Zhu, Y. F. Chem. Mater. 2005, 17, 3537.
  • 7Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459.
  • 8Tang, J. W.; Zou, Z. G.; Ye, J. H. Chem. Mater. 2004, 16, 1644.
  • 9Zhang, L. S.; Wang, W. Z.; Zhou, L.; Xu, H. L. Small 2007, 3, 1618.
  • 10Lin, X. P.; Huang, T.; Huang, F. Q.; Wang, W. D.; Shi, J. L. J. Mater. Chem. 2007, 17, 2145.

共引文献77

同被引文献136

引证文献18

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部