期刊文献+

介质阻挡放电蜂窝斑图形成过程的光谱研究 被引量:3

Study on Formation Process of Honeycomb Pattern in Dielectric Barrier Discharge by Optical Emission Spectrum
下载PDF
导出
摘要 采用光谱法,研究了氩气/空气混合气体介质阻挡放电中蜂窝斑图形成过程中等离子体参量的变化。实验发现,随着电压的增加,放电经历六边形点阵斑图及疏密点同心圆环斑图后,形成了蜂窝斑图。利用氮分子第二正带系(C^3Π_u→B^3Π_g)的发射谱线、氩原子763.26 nm(2P_6→1S_5)与772.13 nm(2P_2→1S_3)两条谱线强度比法和氩原子696.57 nm(2P_2→1 S_5)谱线的展宽,分别研究了上述三种斑图的分子振动温度、电子激发温度和电子密度。结果发现:蜂窝斑图的分子振动温度和电子激发温度均高于六边形点阵斑图相应的温度,但其电子密度却比后者的电子密度低。实验还通过电容法,测量了放电斑图的放电功率,发现蜂窝斑图的放电功率远远高于六边形点阵斑图的放电功率。工作结果对于研究介质阻挡放电自组织斑图的形成机制具有重要意义。 The authors report on the first investigation of the variations in the plasma parameters in the formation process of the honeycomb pattern in a dielectric barrier discharge by optical emission spectrum in argon and air mixture .The discharge under-goes hexagonal lattice ,concentric spot-ring pattern and honeycomb pattern with the applied voltage increasing .The molecular vi-bration temperature ,electron excitation temperature and electronic density of the three kinds of patterns were investigated by the emission spectra of nitrogen band of second positive system (C3Πu → B3Πg ) ,the relative intensity ratio method of spectral lines ofArⅠ763.51nm(2P6 →1S5)andArⅠ772.42nm(2P2 →1S3)andthebroadeningofspectralline696.5nmrespectively.It was found that the molecular vibration temperature and electron excitation temperature of the honeycomb pattern are higher than those of the hexagonal lattice ,but the electron density of the former is lower than that of the latter .The discharge powers of the patterns were also measured with the capacitance method .The discharge power of the honeycomb pattern is much higher than that of the hexagonal lattice .These results are of great importance to the formation mechanism of the patterns in dielectric barri-er discharge .
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第4期915-918,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(11175054) 博士点基金项目(20101301110001) 河北省科技厅重点项目(11967135D) 河北省教育厅重点项目(ZD2010140)资助
关键词 介质阻挡放电 斑图 等离子体参量 放电功率 Dielectric barrier discharge Pattern Plasma parameters Discharge power
  • 相关文献

参考文献11

  • 1Kogelschatz U. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1.
  • 2Kogelschatz U. IEEE Trans. Plasma Sci. , 2002, 30(4): 1400.
  • 3ZHANGYuan-tao,WANGDe-zhen,WANGYan-hui.物理学报,2005,54(10):4808.
  • 4Bemecker B, Callegari T, Blanco S, et al. J. Phys. D. Appl. Phys. , 2009, 10: 1051.
  • 5Breazeal W, Flynn K M, Gwinn E G. Phys. Rev. E, 1995, 52: 1503.
  • 6Eberhard Bodenschatz, John R de Bruyn. Guenter Ahlers, et al. Phys. Rev. Lett. , 1991, 67: 3078.
  • 7YinZQ,ChaiZF,Dong I.F.物理学报,2003,52(4):925.
  • 8Sinclair J, Walhout M. Phys. Rev. Lett. , 2012, 108: 035005.
  • 9LIXue-chen,LIURun-fu,JIAPeng-ying,et a1.物理学报,2012,11:115205.
  • 10CHENJun-ying,DONGLi-fang,Liyuan-yuaneta1.物理学报,2012,61(7).

共引文献1

同被引文献26

  • 1Sinclair J, Walhout M. Physical Review Letters, 2012, 108: 035005.
  • 2Bernecker B, Callegari T, Blanco S, et al. The European Physical Journal Applied Physics, 2009, 47.
  • 3Hou Shiying, Zeng Peng, Liu Kun, et al. High Voltage Engineering, 2012, 38(7):.
  • 4Fan Weili, Dong Lifang, Zhao Hai-tao, et al. IEEE Transaction on Plasma Science, 2009, 37(6): 1016.
  • 5NIU Zheng, SHAO Tao, ZHANG Cheng, et al(年). High Voltage Engineering, 2011, 37(6): 1536.
  • 6Chen Junying, Dong Lifang, Li Yuanyuan, et al. 物理学报, 2012, 61(7): 075211.
  • 7Pu Yudong, Yang Jiamin, Jin Fengtao, et al. Acta Physica Sinica, 2011, 60(4): 045210.
  • 8Gao Yenan, Pan Yuyang, Dong Lifang, et al. Phys. Plasmas, 2014, 21: 103515.
  • 9Kogelschatz U. Journal of Physics: Conference Series, 2010, 256: 012015.
  • 10Eliasson B, Kogelschatz. IEEE TRANS. Plasma Science, 1991, 19(2): 309.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部