期刊文献+

超低酸预处理结合酶解提高玉米秸秆糖化效率 被引量:11

Pretreatment by extremely low acid hydrolysis combed with enzymolysis improving saccharification efficiency of corn stalk
下载PDF
导出
摘要 为提高纤维素酶解糖化的效率,该文采用超低浓度硫酸水解预处理废弃玉米秸秆。重点考察了不同酸浓度、反应温度、反应时间条件下超低浓度酸水解及后续酶解的总还原糖、葡萄糖及木糖的产率,详细叙述了总还原糖及各种单糖在酸水解及酶解过程中的转化规律,通过正交试验确定酸水解的最佳工况为酸浓度0.1%,反应温度160℃,反应时间55 min,搅拌180 r/min,固液比1∶10。酸水解后进行酶解(酶用量5%,pH值4.6,时间24 h,温度50℃)得到还原糖、葡萄糖、木糖产率分别为56.22%、16.97%、18.83%。通过红外光谱和纤维素分析仪对酸水解和酶解后的残渣进行分析可知,纤维素、半纤维素的转化率分别为88.52%、95.18%,进一步计算还原糖、葡萄糖、木糖的转化率为88.11%、44.86%、72.49%。该方法较大程度避免了还原糖在酸水解过程中的降解,保证了半纤维素还原糖的转化效率,进一步提高了总还原糖的产率,为超低酸水解在燃料乙醇领域提供了新的应用途径。 Corn straw is one of the most abundant agricultural and forest residues containing cellulose, hemicellulose, and lignin. About 2.24×108 tons of corn straw are produced per year in china, most of which is burned or lost in farmland, and only a small part is used as feed for livestock. Because corn straw is abundant in cellulose, it can be used as a substitute for grain to produce fuel-ethanol, which can be a significant contribution for relieving the crisis of resource and foodstuff shortage. The process of producing fuel-ethanol includes pretreatment, enzymatic hydrolysis, fermentation, and distillation. Cellulose, hemicellulose, and lignin in corn straw form stable polymers, which hardly dissolve in water, dilute acid, dilute alkali, and most organic solutions. Each component interrelates with all the others. Because of the complex configuration, hemicellulose and lignin will hinder the degradation of cellulose. To utilize the cellulose, corn straw must be pretreated. To improve the reduction of sugar yield in corn straw, the hydrolysis method of using extremely low sulfuric acid followed by enzymolysis is employed to treat corn stalk. To investigate the mechanism of reducing sugar conversion in acid hydrolysis and enzymolysis, the yield of totally reduced sugar, glucose and xylose was analyzed with acid hydrolysis followed by enzymolysis under different acid concentrations, temperatures and reaction times. Acid concentrations 0.1%, 160℃, 55 min, 180 r/min, solid-liquid ratio 1:10 was confirmed by orthogonal experiment. Through acid hydrolysis followed by enzymolysis (enzyme 5.0%, pH 4.6, 24 h, 50℃), the yield of totally reduced sugar, glucose, and xylose was 56.22%, 16.97%and 18.83%, respectively. The concentration of totally reduced sugar, glucose, and xylose was 62.46, 18.85 and 20.92 g/L, respectively. After acid hydrolysis and enzymolysis treatment, the corn stalk component was analyzed by infrared spectral and the Van Soest methods. The conversion of cellulose and hemicellulose was 88.52% and 95.18%, respectively. The conversion of totally reduced sugar, glucose, and xylose was 88.11%, 44.86% and 72.49%, respectively. Extremely low acid pretreatment can hydrolyze hemicellulose into monosaccharides and degrade the crystalline structure of cellulose. The pretreated cellulose with high porosity can be hydrolyzed by cellulose efficiently. This method can avoid degradation of monosaccharides, improve reduced sugar yield and increase the conversion efficiency of corn straw cellulose.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2014年第6期179-184,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家"863"计划主题项目:生物质燃料乙醇制备及综合利用关键技术研究(SS2013AA050700)
关键词 纤维素 秸秆 水解 酶解 预处理 cellulose straw hydrolysis enzymolysis pretreatment
  • 相关文献

参考文献21

  • 1Kim J S,Lee Y Y,Torget R W.Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions[J].Applied biochemistry and biotechnology,2001,91(1): 331-340.
  • 2Banerjee S,Sen R,Giri B,et al.Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies[J].Biofuels Bioproducts and Biorefining,2010,4(1): 77-93.
  • 3Adeb A,Ruth M,Lbsen K,et al.Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover[R].US: National Renewable Energy Laboratory (NREL),2002.
  • 4GIL GARROTE.Kinetic modeling of corncob autohydrolysis[J].Process Biochemistry,2001,36(6): 517-578.
  • 5Selig M J,Viamajala S,Decker S R,et al.Deposition of lignin droplets produced during acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose[J].Biotechnology Progress,2008,23(6): 1333-1339.
  • 6Sun Y,Cheng J J.Dilute acid pretreatment of rye straw and bermudagrass for ethanol production[J].Bioresource Technology,2005,96(14): 1599-1606.
  • 7Zhang Y H P,Lynd L R.Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulose systems[J].Biotechnol.Bioeng.,2004,88(7): 797-824.
  • 8Christofer Karlsson,Matthias Morgelin,Mattias Collin,et al.SufA-a bacterial enzyme that cleaves fibrinogen and blocks fibrin network formation[J].Microbiology,2009,155(1): 238-248.
  • 9Kumar D,Ganti M.Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production[J].Biotechnology for Biofuels,2011,4(1): 27-45.
  • 10Kumar P,Barrett D M,Delwiche M J,et al.Methods for pretreatment of lignocellulosic biomass for efficicent hydrolysis and biofuel production[J].Industrial and Engineering Chemistry Research,2009,48(8): 3713-3729.

二级参考文献22

  • 1赵志刚,程可可,张建安,高峰.木质纤维素可再生生物质资源预处理技术的研究进展[J].现代化工,2006,26(z2):39-42. 被引量:48
  • 2杨崎峰,王双飞,黄崇杏,宋海农,封方凯.蒸汽爆破蔗渣浆的微观研究[J].中国造纸学报,2005,20(2):27-30. 被引量:13
  • 3庄新姝,王树荣,骆仲泱,安宏,岑可法.纤维素低浓度酸水解试验及产物分析研究[J].太阳能学报,2006,27(5):519-524. 被引量:34
  • 4王许涛,周恒涛,张百良.秸秆生产乙醇的预处理方法分析[J].安徽农业科学,2007,35(22):6883-6884. 被引量:10
  • 5Ming W Lan,Bruce E Dale.Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST)[J].PNAS,2009,106 (5):1368-1373.
  • 6Laura C,López G D.Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes[J].Biological Wastes,1989,30(2):153-157.
  • 7Mihaela Unciuleac,Matthias Boll.Mechanism of ATP-driven electron transfer catalyzed by the benzenering-reducing enzymebenzoyl-CoA reductase[y].PNAS,2001,98(24):13619-13624.
  • 8Neves L,Ribeiro R,Oliveira R,et al.Enhancement of methane production fiom barley waste[J].Biomass and Bioenergy,2006,30(6):599-603.
  • 9Christofer Karlsson,Matthias Morgelin,Mattias Collin,et al.SufA-a bacterial enzyme that cleaves fibrinogen and blocks fibrin network formation[J].Microbiology,2009,155(1):238-248.
  • 10Masahisa Wada,Takeshi Okano.Synchrotron-radiated X-ray and neutron diffraction study of native cellulose[J].Cellulose,1997,4(3):221 -232.

共引文献46

同被引文献126

引证文献11

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部