期刊文献+

水动力学模型实时校正方法对比 被引量:14

Comparison of real-time correction methods of hydrodynamic model
下载PDF
导出
摘要 选择典型的实时校正方法:传统的误差自回归、基于K最邻近算法(KNN)的非参数校正及基于Kalman滤波的多断面校正法,并以Kalman滤波与KNN结合构造综合方法,以淮河流域吴家渡—小柳巷区间作为试验河段,构建一维水动力学模型并与实时校正方法联合应用。简要介绍这4种方法的原理与模型构建方法,然后对比分析各种方法的模拟结果,尤其对模拟洪峰稳定性、峰现时间、峰现误差等进行比较,认为前3种基本方法均能在相当长的预见期内提高洪水的预报精度,而综合法实时校正法对洪峰部位的模拟更为稳定可靠、总体效果更好,更适合预报校正工作的需要。 Three typical real-time correction methods, including the traditional error autoregressive method, the nonparametric correction method based on the K-nearest neighbor ( KNN ) , and the multi-cross section correction method based on Kalman filtering, as well as a combination of the KNN method and the Kalman filtering method were used in combination with a one-dimensional hydrodynamic model for flood forecasting and real-time correction in the Wujiadu-Xiaoliuxiang reach of the Huaihe Basin. The principles and construction methods of the four methods are briefly introduced, and a comparative analysis of their simulation results, especially of the stability of the flood peak, the time of occurrence of the flood peak, and the error of occurrence of the flood peak, is conducted. The conclusions are as follows: the three basic methods can improve the accuracy of flood forecasting over quite a long forecast period, and the combination method is more effective and reliable for flood peak simulation, and is more applicable to forecast correction.
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期124-129,共6页 Journal of Hohai University(Natural Sciences)
基金 国家自然科学基金(41130639 51179045 41101017) 公益性行业(气象)科研专项(201006037) 水利部公益项目(201301068)
关键词 水动力学模型 模型实时校正 误差自回归方法 Kalman滤波算法 K最近邻算法 hydrodynamic model real-time correction error autoregressive model Kalman filtering algorithm K-nearest neighbor algorithm
  • 相关文献

参考文献10

  • 1王井泉,李致家.卡尔曼半自适应滤波水位实时预报模型研究[J].人民长江,2000,31(1):28-30. 被引量:7
  • 2葛守西,程海云,李玉荣.水动力学模型卡尔曼滤波实时校正技术[J].水利学报,2005,36(6):687-693. 被引量:46
  • 3王船海,白耀玲.基于卡尔曼滤波技术的河道汇流实时校正[J].河海大学学报(自然科学版),2007,35(2):181-185. 被引量:7
  • 4REFSGAARD J C. Validation and intercomparison of different updating procedures for real-time forecasting [ J ]. Nordic Hydrology, 1997, 28:65-84.
  • 5KARLSSON M, YAKOWITZ S. Nearest-neighbor methods for nonparametric rainfall-runoff forecasting [ J ]. Water Resource Research, 1987, 23 (7) : 1300-1308.
  • 6DAVID R M. Handbook of Hydrology[ M]. New York: McGraw-Hill, 1993 : 960-986.
  • 7CLOKE H L, PAPPERGER F. Ensemble flood forecasting: a review [ J]. Journal of Hydrology, 2009,375 (3/4) :613-626.
  • 8HENRIK M, CLAUS S. Adaptive state updating in real-time river flow forecasting:a combined filtering and error forecasting procedure[J]. Journal of Hydrology, 2005,308(1/4) :302-312.
  • 9VAN S N, RONSYN J, WILLEMS P. A non-parametric data-based approach for probabilistic flood forecasting in support of uncertainty communication[J]. Environmental Modeling & Software, 2012, 33:92-105.
  • 10赖锡军,李纪人.洪水淹没范围数据与动力学模型的融合[J].河海大学学报(自然科学版),2009,37(5):529-533. 被引量:8

二级参考文献21

  • 1彭定志,熊立华,郭生练,胡彩虹,张红.MODIS在水文水资源中的应用与展望[J].水科学进展,2004,15(5):683-688. 被引量:29
  • 2李纪人,潘世兵.信息技术在水利领域应用与展望[J].中国水利,2004(22):40-42. 被引量:11
  • 3陈小红,陈俊合.嘉陵江流域三江汇流洪水联机实时预报研究[J].水文,1995,14(4):6-12. 被引量:2
  • 4葛守西.现代洪水预报技术[M].北京:中国水利水电出版社,2002..
  • 5SMITH L C. Satellite remote sensing of river inundation area, stage, and discharge:a review[ J]. Hydrological Processes, 1997,11 (10): 1427-1439.
  • 6ALSDORF D E, LETTENMMER D P. Geophysics tracking fresh water from space[J], Science, 2003,301 : 1491-1494.
  • 7HALL J W, TARANTOLA S, BATES P D, et al. Distributed sensitivity analysis of flood inundation model calibration[J]. Journal,of Hydraulic Engineering, 2005,31 (2) : 117-126.
  • 8HUNTER N M, BATES P D, HOMITT M S, et al, Utility of different data types for calibrating flood inundation models within a GLUE framework[J]. Hydrology and Earth System Sciences, 2005,9(4):412-430.
  • 9ROUX H, DARTUS D. Parameter identification using optimization techniques in open-channel inverse problems[J]. J Hydraul Res,2005, 43: 311-320.
  • 10CACUCI D G.Sensitivity and uncertainty analysis,Volume 1 :theory[M]. Virginia Beach:Chapman & HAIL/CRC,2003.

共引文献58

同被引文献169

引证文献14

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部