期刊文献+

建筑结构振动的一种常分数阶控制策略

A constant fractional-order control strategy for building structure vibration
下载PDF
导出
摘要 为了在实际控制中取得更优的效果,结构阻尼采用分数阶表示,以建筑结构为研究对象,设系统的阻尼为位移向量的α阶导数,提出一种变异阶次控制器的设计方法。具体过程为:首先,假设原运动方程中的阻尼项为系统位移向量的β阶导数,并对该运动方程进行控制器设计;其次,考虑控制对象为含α阶导数的运动方程,为达到控制目的,采取基于输出相同的处理方式;再次,根据第3代基准建筑物定义的性能指标,通过搜索的方式确定最优参数β,分数阶阶次在0和2之间均有阻尼效果,搜索范围为[0,2]。仿真结果表明,存在不同于α的β值可获得更优的控制效果,同时,针对不同的性能指标,最优β的选取亦不同。最后,通过一个仿真实例说明该控制方法的可行性。 In order to achieve a better control effect, the fractional-order was used to describe the damping force, which was supposed to be anα-order derivative of the displacement vector, and a variational-order controller design method was developed. The detailed process is as follows:First, it is assumed that the damping force in the original equation of motion is aβ-order derivative of the displacement vector and the controller is designed according to this assumption. Second, considering the equation of motion that includes anα-order derivative as the control object, a control strategy based on systemic output is applied to ensure that the designed controller can be used for the original model. Third, the optimal parameter β is determined with the search method according to the third generation of the benchmark building control performance index. In this study, there was a damping effect when the fractional-order ranged from 0 to 2 , and the search scope was between 0 to 2 . The simulation results show that optimal parameters can be found to obtain a better control effect when β is different from α. Meanwhile, the selection of the optimal β varied with different performance indices. Finally, a simulation example verified the feasibility of the proposed control strategy.
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期150-154,共5页 Journal of Hohai University(Natural Sciences)
基金 国家自然科学基金重点项目(U1134207) 国家自然科学基金(51178160)
关键词 建筑结构 常分数阶 运动方程 主动控制 building structure constant fractional-order equation of motion active vibration control
  • 相关文献

参考文献1

二级参考文献15

  • 1曹军义,曹秉刚.分数阶控制器的数字实现及其特性[J].控制理论与应用,2006,23(5):791-794. 被引量:33
  • 2严慧,于盛林,李远禄.分数阶PI^λD^μ控制器参数设计方法——极点阶数搜索法[J].信息与控制,2007,36(4):445-450. 被引量:23
  • 3Dorcak L. Numerical models for the simulation of the fractional-order control system[EB/OL]. [2009-06- 23]. http://arxiv, org/abs/math/020108.
  • 4Oustaloup A. La drivation non entire[M]. Paris: HERMES, 1995.
  • 5Podlubny I. Fractional-order System and PIaD Con- trollers [J]. IEEE Transactions on Automatic Con- trol, 1999, 44(1): 208-214.
  • 6Podlubny I, Dorcak L, Kostial I. On fractional deriva- tives, fractional-order dynamic systems and PIaD controllers[C]//Proceeding of the 36'h Conference onDecision& Control. New York: IEEE, 1997: 4985- 4990.
  • 7Zhao Chunna, Xue Dingyu, Chen Yangquan. A frac- tional order PID tuning algorithm for a class of frac- tional order plants[C]//Proceeding of the IEEE Inter- national Conference on Mechatronics ~ Automation. USA: IEEE, 2005:216-221.
  • 8Monje C A, Calderon A J, Vinagre B M, et al. On fractional PI controllers., some tuning rules for ro- bustness to plant uncertainties[J]. Nonlinear Dynam- ics, 2004, 38(1-4): 369-381.
  • 9Chen Yangquan, Dou Huifang, Bias M V,et al. A ro- bust tuning method for fractional order PI controllers[C]//Proceedings of the 2"d IFAC Workshop on Frac- tional Differentiation and Its Applications Porto. Pot-tugal :Hindawi Publishing Corporation, 2006 : 19-21.
  • 10Feliu-Batlle V, Prez R R,Rodriguez L S. Fractional robust control of main irriagtion canals with variable dynamic parameters [J]. Control Engineering Prac- tice, 2007, 15(6).. 673-686.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部