期刊文献+

非合作结构化深网数据源摘要的动态更新 被引量:1

Dynamic Update of Summary of Non-cooperative Structured Deep Web
下载PDF
导出
摘要 利用同领域数据源主题更新的关联特点,提出了一种非合作结构化深网数据源摘要的动态更新方法,在保证数据源选择效果的前提下,较大幅度地提高了数据源摘要更新的效率(即减少了数据源摘要更新的工作量).实验结果表明,该方法可以减少87.7%以上的摘要更新工作量,同时具有较好的召回率及准确率. We propose a dynamic update method of summary for non-cooperative structured deep web selection with the associated update characteristics of data sources in a field. Our method significantly improves the efficiency of the summary update under the premise of ensuring the effect of the data source selecting. The experiment results show that our dynamic update method of summary reduce the calculation work by 87.7% and has a good recall ratio and precision.
出处 《微电子学与计算机》 CSCD 北大核心 2014年第4期36-39,43,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(61173146) 江西省教育厅科技研究项目(GJJ13249 GJJ11729) 江西省研究生创新专项资金项目(YC2012-B021) 江西省自然科学基金(20132BAB201045)
关键词 动态 非合作 结构化深网 数据源选择 dynamic non-cooperative structured deep Web data source selection
  • 引文网络
  • 相关文献

参考文献7

  • 1万常选,邓松,刘喜平,廖国琼,刘德喜,江腾蛟.Web数据源选择技术[J].软件学报,2013,24(4):781-797. 被引量:16
  • 2Milad S. Central-rank-based collection selection in un- cooperative distributed information retrieval [C] // Proc of the 29th European Conference on IR Research. Heidelberg: Springer-Verlag, 2007: 160-172.
  • 3Hong D, Si L, Bracke P, et al. A joint probabilistic classification model for resource selection :C] //Proe of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIRrl0). New York: ACM, 2010: 98-105.
  • 4Liu V Z, Luo R C, Chu W W. Dprot A probabilistic approach for hidden Web database selection using dy- namic probing [C] //Proc of the 20th Int'l Conf. on Data Engineering ( ICDE ' 04 ). Washington. IEEE Computer Society, 2004: 1-12.
  • 5范举,周立柱.基于关键词的深度万维网数据库选择[J].计算机学报,2011,34(10):1797-1804. 被引量:11
  • 6Nguyen K,Cao J. K-Graphs: Selecting top-k data sources for XML keyword Queries [(3] //Proc of 22nd Int'l Conf on Database and Expert Systerrts Applications. Heidelberg: Springer-Verlag, 2011: 425-439.
  • 7邓松,万常选,刘喜平,等.基于主题语义的非合作结构化Top-N深网数据源选择[J].计算机研究与发展,2012,49(增刊1):58-64.

二级参考文献19

  • 1Madhavan J, Cohen S, Dong X, Halevy A, Jeffery S, Ko D, Yu C. Web-scale data integration: You can afford to pay as you go//Proceedings of the CIDR. Asilomar, USA, 2007: 342-350.
  • 2Madhavan J, Ko D, Kot L, Ganapathy V, Rasmussen A, Halevy A. Google's deep web crawl. PVLDB, 2008, 1: 1241- 1252.
  • 3He H, Meng W, Yu C, Wu Z. Automatic integration of Web search interfaces with wise integrator. VLDB Journal, 2004, 12: 256- 273.
  • 4He B, Zhang Z, Chang K C-C. Knocking the door to the deep web: Integrating web query interfaces//Proceedings of theSIGMOD. Paris, France, 2004:913-914.
  • 5Zhang Z, He B, Chang K C C. Light weight domain based form assistant: Querying Web databases on the Fly//Proceedings of the VLDB. Trondheim, Norway, 2005:97-108.
  • 6Fan J, Li G, Zhou L. Interactive SQL query suggestion: Making databases user-friendly//Proeeedings of the ICDE. Hannover, Germany, 2011:351- 362.
  • 7Agarwal G, Kabra G, Chang K C C. Towards rich query in terpretation: Walking back and forth for mining query tern plates//Proceedings of the WWW. Raleign, USA, 2010: 1-10.
  • 8Bu Y, Howe B, Balazinska M, Ernst M D. HaLoop: Efficient iterative data processing on large clusters. PVLDB, 2010, 3(1): 285 -296.
  • 9Si L, Callan J P. Relevant document distribution estimation method for resource selection//Proceedings of the S1GIR. Toronto, Canada, 2003: 298-305.
  • 10Thomas P, Shokouhi M. Sushi: Scoring scaled samples for server selection//Proceedings of the SIGIR. Boston, USA, 2009:419-426.

共引文献21

同被引文献1

引证文献1

;
使用帮助 返回顶部