期刊文献+

石羊河流域近53a参考作物蒸散量的敏感性分析 被引量:7

Sensitivity Analysis of Reference Crop Evapotranspiration in Shiyang River Basin in Recent 53Years
下载PDF
导出
摘要 利用国家气象信息中心提供的地面气候资料日值数据集,基于FAO Penman—Monteith公式计算了石羊河流域4个测站1959—2011年的逐日参考作物蒸散量(ET0)。利用敏感系数法计算了其对平均最高气温、平均最低气温、风速、平均相对湿度和日照时数的敏感系数,并分析了敏感系数的时空变化特征。结果表明,石羊河流域ET0对相对湿度最敏感,其次为风速和气温,而对日照时数的敏感性最低。由于气象要素分布不均,敏感系数的空间差异显著,相对湿度的敏感系数在上游祁连山区形成高值区,同时,气温在该区的敏感系数也相对较大,而风速的敏感系数在下游民勤盆地较大,日照时数的敏感系数在全区无明显差异。各气象因子的敏感系数均存在一定程度的波动,风速的敏感系数冬高夏低,气温和日照时数的敏感系数均为夏季最高,相对湿度敏感系数的绝对值持续上升在秋季达到最大。53a来,相对湿度敏感系数波动变化,近20a来其绝对值上升趋势显著,而风速、日照时数和气温的敏感系数无明显变化趋势。 The sensitivity coefficients of daily reference evapotranspiration (ET0) to average temperature, wind speed, relative humidity and sunshine hours in the Shiyang River basin during 1959--2011 were calculated by using Penman--Monteith equation recommended by FAO, based on daily meteorological data provided by the China Meteorological Administer. Moreover, temporal variations of the sensitivity coefficients were analyzed. Results show that relative humidity was the most sensitive factor of ET0 in the Shiyang River basin, wind speed and temperature were in the second place, and sunshine hours had the lowest sensitivity. Because of climate factors contrast and significant spatial difference of the sensitive coefficients, the sensitive coefficient of relative humidity formed high value area in the upstream area of the Qilian Mountains. Mean- while, the sensitive coefficient of temperature was relatively large. But the sensitive coefficient of wind speed was the largest in the downstream area of the Minqin basin. The sensitive coefficient of sunshine hours had no significant difference in all the areas. The sensitive coefficient of each of the meteorological factors showed a certain degree of volatility. Wind speed was high in winter, but low in summer; temperature and sunshine hours were all high in summer; and the absolute value of relative humidity continued to rise to the maximum in fall. The sensitive coefficient of relative humidity fluctuated in the past 53 years, absolute value showed a significant upward trend, but the wind speed, sunshine hours and temperature had no obvious trend in the last 20 years.
出处 《水土保持通报》 CSCD 北大核心 2014年第1期303-306,310,共5页 Bulletin of Soil and Water Conservation
基金 国家自然科学基金项目“水资源约束下的黑河流域土地利用/覆盖变化模拟研究”(40961038) 生态经济学省级重点学科(5001-021) 西北师范大学知识与科技创新工程项目(NWNU-KJCXGC-03-66)
关键词 Penman--Monteith公式 参考作物蒸散量 敏感系数 Penman-- Monteith equation reference crop evapotranspiration sensitivity coefficient
  • 相关文献

参考文献8

二级参考文献108

共引文献484

同被引文献94

  • 1郝振纯,杨荣榕,陈新美,陈玺,梁之豪,达娃顿珠.1960-2011年长江流域潜在蒸发量的时空变化特征[J].冰川冻土,2013,35(2):408-419. 被引量:34
  • 2刘晓英,李玉中,郝卫平.华北主要作物需水量近50年变化趋势及原因[J].农业工程学报,2005,21(10):155-159. 被引量:142
  • 3魏金平,王建宏.遏制石羊河下游生态恶化的对策研究[J].中国农业资源与区划,2006,27(1):26-29. 被引量:16
  • 4谢贤群,王菱.中国北方近50年潜在蒸发的变化[J].自然资源学报,2007,22(5):683-691. 被引量:126
  • 5Sharifi A, Dinpashoh Y. Sensitivity Analysis of the Penman-Monteith reference Crop Evapotranspiration to Climatic Variables in Iran [J]. Water Resources Management, 2014, 28(15):5 465-5 476.
  • 6Gong L, Xu C Y, Chen D, et al. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin [J]. Journal of Hydrology, 2006, 329(3):620- 629.
  • 7Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage paper 56[R]. Rome: Food and Agriculture Organization of the United Nations, 1998.
  • 8蒋冲,王飞,穆兴民,等.秦岭南北潜在蒸散量时空变化及突变特征分析[J].长江流域资源与环境,2013,22(5):573-581.
  • 9Kustas W P, Norman J M. Use of remote sensing for e- vapotranspiration monitoring over land surfaces [-J~. Hydrological Sciences Journal, 1996,41(4) .. 495-516.
  • 10Mcvicar T R,Van Niel T G,Li L. Spatially distributing monthly reference evapotranspiration and pan evapora- tion considering topographic influences[-J~. Journal ofHydrology, 2007,338 : 196-220.

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部