期刊文献+

基于最短路径信任关系的推荐项目计算方法 被引量:4

Fast Computing Method for Items Recommendation Based on Shortest-Path Trust Relationship
下载PDF
导出
摘要 针对社交网络中协同过滤推荐算法的推荐速度计算问题,提出了一种基于最近邻方法的改进计算方法,并对算法有效性进行了分析。该算法对用户的相似性度量采用基于最短路径的信任关系,用分层图和动态规划的方法进行计算,并在社交网络的应用中对关系链的深度进行限制。对该算法基于KDD Cup 2012 Track 1的数据进行了仿真,并与其他方法做了性能比较。实验表明,改进算法可以很好地平衡推荐效率和准确率指标。 In order to increase the speed of collaborative filtering recommendation in social networks, an improved nearest-neighbor algorithm is proposed in this paper. The proof of its correctness is also given in detail. The similarity measurement between users is based on trust relationship by using shortest path method. Layered graph and dynamic programming are applied to calculate the similarity. Furthermore, the recommendation speed can also be improved by limiting the depth of relationship chain in practical applications of social networks. The comparative simulations are carried out based on the KDD Cup 2012 Track 1 datasets. The results show that the better balance between the accuracy and the recommendation efficiency can be achieved by the proposed algorithm.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第2期162-166,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61273308) 中央高校基本科研业务费(ZYGX2013J076)
关键词 协同过滤 推荐系统 相似性度量 最短路径 信任关系 collaborative filtering recommender system similarity measurement shortest path trust relationship
  • 相关文献

参考文献16

  • 1RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3): 56-58.
  • 2RICCI F, ROKACH L, SHAPIRA B, et al. Recommender systems handbook[M]. New York: Springer, 2011.
  • 3LU L, MEDO M, YEUNG C H, et al. Recommender systems[J]. Physics Reports, 2012, 519(1): 1-49.
  • 4周涛.个性化推荐的十大挑战[J].中国计算机学会通讯,2012,8(7):48-61.
  • 5SCHAFER J B, KONSTAN J A, RIEDL J. E-eornmerce recommendation applications[J]. Data Mining and Knowledge Discovery, 2001, 5(1/2): 115-153.
  • 6LINDEN G, SMITH B, YORK J. Amazon.corn recommendations: item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1): 76-80.
  • 7SCHAFER J B, FRANKOWSKI D, HERLOCKER J, et al. The adaptive web: Collaborative filtering recommender systems[M]//Lecture Notes in Computer Science: 4321. Berlin, Heidelberg: Springer, 2007: 291-324.
  • 8ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Trans Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 9BURKE R. The adaptive web: Hybrid web recommender systems[M]//Leeture Notes in Computer Science: 4321. Berlin, Heidelberg: Springer, 2007: 377-408.
  • 10RICHARDSON M, AGRAWAL R, DOMINGOS P. Trust management for the semantic web[C]//Proc Of the Second International Semantic Web Conference. [S.I.]: Springer, 2003, 2870: 351-368.

二级参考文献69

  • 1GETOOR L,DIEHL C P.Link mining:a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):3-12.
  • 2SARUKKAI R R.Link prediction and path analysis using markov chains[J].Computer Networks,2000,33(1-6):377-386.
  • 3ZHU J,HONG J,HUGHES J G Using markov chains for link prediction in adaptive web sites[J].Lect Notes Comput Sci,2002,2311:60-73.
  • 4POPESCUL A,UNGAR L.Statistical relational learning for link prediction[C] //Proceedings of the Workshop on Learning Statistical Models from Relational Data.New York:ACM Press,2003:81-87.
  • 5O'MADADHAIN J,HUTCHINS J,SMYTH P.Prediction and ranking algorithms for event-based network data[C] //Proceedings of the ACM SIGKDD 2005.New York:ACM Press,2005:23-30.
  • 6LIN D.An information-theoretic definition of similarity[C] //Proceedings of the 15th Intl Conf Mach.Learn..San Francisco,Morgan Kaufman Publishers,1998:296-304.
  • 7LIBEN-NOWELL D,KLEINBERG J.The link-prediction problem for social networks[J].J Am Soc Inform Sci Technol,2007,58(7):1019-1031.
  • 8CLAUSET A,MOORE C,NEWMAN M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453:98-101.
  • 9HOLLAND P W,LASKEY K B,LEINHARD S.Stochastic blockmodels:First steps[J].Social Networks,1983,5:109-137.
  • 10GUIMERA R,SALES-PARDO M.Missing and spurious interactions and the reconstruction of complex networks[J].Proc Natl Sci Acad USA,2009,106(52):22073-22078.

共引文献492

同被引文献25

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部