期刊文献+

基于RVM的网络流量分类研究 被引量:11

Network Traffic Classification Based on Relevant Vector Machine
下载PDF
导出
摘要 将相关向量机(RVM)分类模型应用于网络流量分类问题中。首先对实验数据进行了标准化处理,然后将RVM与其他机器学习算法进行了性能比较,最后在RVM分类结果预测概率中引入置疑区间概念,研究了置疑区间范围及其对分类准确性的影响,并基于此提出了一种新的混合流量分类方法。实验结果表明:1)RVM在准确性等3方面性能指标上优于SVM,且在小样本情况下仍具有较高的分类准确率;2)置疑区间[0.1,0.9]内的分类预测准确率较低,而置疑区间之外的分类预测准确率在98%以上。 Relevant vector machine (RVM) is applied in network traffic classification. Firstly, experiment data is standardized, and then RVM is compared with other machine learning tools. Lastly, doubting interval is introduced to analyze predicted probability of classification, based on which a new hybrid traffic classification approach is proposed. Experiment studies illustrate that:1) RVM excels the support vector machine (SVM) in three performances, and moreover, its classification accuracy is rather high in the situation of small sample circumstances;2) probabilistic classification in doubting interval has a rather low classification accuracy while an accuracy above 98%outside doubting interval.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第2期241-246,共6页 Journal of University of Electronic Science and Technology of China
基金 陕西省科技计划自然基金重点项目(2012JZ8005) 全军军事学研究生课题(2010XXXX-488)
关键词 置疑区间 机器学习 相关向量机 流量分类 douting interval machine learning relevant vector machine traffic classification
  • 相关文献

参考文献16

  • 1胡昌华,王兆强,周志杰,司小胜.一种RVM模糊模型辨识方法及在故障预报中的应用[J].自动化学报,2011,37(4):503-512. 被引量:16
  • 2TOUCH J, LEAR E, MANKIN A, et aI. Internet assigned numbers authority (IANA)[EB/OL]. [2010-08-28]. http:// www.iana.orglassignments/port-numbers.
  • 3SEN S, SPATSCHECK 0, WAND D. Accurate, scalable in-network identification of P2P traffic using application signatures[C]//Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters (WWW'04). New York, USA: ACM, 2004: 512-521.
  • 4KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS M. BLINC: Multilevel traffic classification in the dark[C]/! ACM SIGCOMM. Phila-delphia, PA, USA: ACM, 2005.
  • 5ZUEV D, MOORE A W. Traffic classification using a statistical approach[C]//Proceedings of PAM 2005. Boston, USA: [s.n.], 2005.
  • 6DAINOTTI. A, PESCAPE. A, SANSONE C. Issues and future directions in traffic c1assification[J]. IEEE Network, 2012,26(1): 35-40.
  • 7GU Cheng-jie, ZHANG Shun-yi, SUN Yan-fei. Real-time encrypted traffic identification using machine learning[J]. Journal ofSofiware, 2011, 6(6): 1009-1016.
  • 8HURLEY J, GARCI-PALACIOS E, SEZER S. Classifying network protocols: a 'two-way' flow approach[J]. Communications, 2012, 5(1): 19-89.
  • 9TIPPING M. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001,1(1): 211-244.
  • 10ZHANG Mian-ji, ROBUST Y. Hyperspectral classification using relevance vector machine[J]. Geoscience and Remote Sensing, 2011, 49(6): 2100-2112.

二级参考文献10

共引文献15

同被引文献113

  • 1徐海东,李冶文,江峰,宋俊德.基于神经网络的UTRAN网络质量综合评价[J].北京邮电大学学报,2005,28(4):41-44. 被引量:15
  • 2陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 3王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 4唐贤伦,仇国庆,李银国,曹长修.基于粒子群优化和SOM网络的聚类算法研究[J].华中科技大学学报(自然科学版),2007,35(5):31-33. 被引量:9
  • 5YU Wei,XU Guobin,CHEN Zhijiang, et al. A cloud computing based architecture for cyber security situa- tion awareness [-C]//4th International Workshop on Security and Privacy in Cloud Computing. National Harbor MD: IEEE, 2013 :488-492.
  • 6STREILEIN W W, TRUELOVE J, MEINERS C, et al. Cyber situational awareness through operational streaming analysis[C]//The 2011 Military Communi- cations Conference. Baltimore MD: IEEE, 2011 : 26-31.
  • 7SHARMA C,KATE V. ICARFAD: A novel frame- work for improved network security situation aware- ness[-J]. International Journal of Computer Applica- tions, 2014,87(19) :26 31.
  • 8KE Weijenn, WANG Shengde. Reliability evaluation for distributed computing networks with imperfect nodes[J]. IEEE Trans Reliability, 1997,46 (3) : 342- 349.
  • 9TIPPING M. Sparse bayesian learning and the rele vance vector machine[-J]. Journal of Machine Learning Research, 2001,1(1) 211 244.
  • 10Moore A W, Zuev D. Internet traffic classification using Bayesian anal- ysis techniques[ C ]//Proc of the 2005 ACM SIGMETRICS Int'l Conf on Measurement and Modeling of Computer Systems ,2005:50 - 60.

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部