期刊文献+

一种动态场景下的视频前景目标分割方法 被引量:7

A Video Foreground Segmentation Method for Dynamic Scenes
下载PDF
导出
摘要 视频中运动前景目标的分割是计算机视觉领域的一项关键问题,在视频监控、检索、事件检测等多个方面具有重要应用价值。现有视频前景目标分割技术主要针对静态场景,在动态场景下难以获取良好效果。该文提出一种高斯混合模型与光流残差相结合的前景目标分割方法。该方法使用高斯混合模型建模,提取初步的前景区域;利用光流残差进一步滤除其中动态纹理背景干扰;采用形态学处理获得前景目标。实验显示,与现有方法相比,该方法可更准确地从动态场景中分割出前景目标轮廓。 Video foreground segmentation is one of the key problems in the field of computer vision. It has important value in many applications, such as video surveillance, retrieval and event detection. Traditional video foreground segmentation algorithms are mainly designed for static scene and cannot competent in dynamic scenes. In this article, a novel video foreground segmentation method based on Gaussian mixture model (GMM) and optical flow residual is proposed. Firstly, the preliminary foreground region is estimated by GMM; then, the foreground region with dynamic texture is detected by optical flow residuals and removed;finally, morphology is utilized to refine the estimated foreground. Experimental evaluation shows that the proposed method can obtain more accurate foreground region in dynamic scenes compared with existing methods.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第2期252-256,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61003143) 中央高校基本科研业务费专项资金(SWJTU12CX094)
关键词 动态纹理 前景目标分割 光流法 光流残差 dynamic texture foreground segmentation optical flow optical flow residual
  • 相关文献

参考文献24

  • 1NELSON R C, POLANA R. Qualitative recognition of motion using temporal texture[J]. CVGIP: Image Understanding, 1992,56(1): 78-89.
  • 2FAZEKAS S, CHETVERIKOV D. Analysis and performance evaluation of optical flow features for dynamic texture recognition[J]. Signal Processing: Image Communication, 2007, 22(7): 680-691.
  • 3CHETVERIKOV D, PETERI R. A brief survey of dynamic texture description and recognition[C]//Proceedings of the 4th International Conference on Computer Recognition Systems. Poland: [s.n.], 2005: 17-26.
  • 4ZHANG Chao-hui, DUAN Xiao-hui, XU Shuo-yu, et al. An improved moving object detection algorithm based on frame difference and edge detection[C]//Fourth International Conference on Image and Graphics. [S.1.]: IEEE, 2007: 519- 523.
  • 5MOHAMED S S, TAHIR N M, ADNAN R. Background modelling and background subtraction performance for object detection[C]IISignal Processing and Its Applications (CSPA), 2010 6th International Colloquium on. [S.I.]: IEEE, 2010: 21-23.
  • 6HUA Min, SHU Hua-zhong, L1U Qian, et al. A study of moving object detection based on combining background profile difference algorithm[C]//2nd International Conference on Industrial and Information Systems. [S.I.]: IEEE, 2010,1: 425-428.
  • 7HOU Y, SUN X, LUN X, et al. Gaussian mixture model segmentation algorithm for remote sensing image[C]// International Conference on Machine Vision and Human-Machine Interface. [S.1.]: IEEE, 2010: 275-278.
  • 8BAYONA A, SANMIGUEL J C, MARTiNEZ J M. Stationary foreground detection using background subtraction and temporal difference in video surveillance [C]//17th IEEE International Conference on Image Processing. [S.1.]: IEEE, 2010: 4657-4660 .
  • 9ZHANG H Y. Multiple moving objects detection and tracking based on optical flow in polar-log images[C]// International Conference on Machine Learning and Cybernetics. [S.1.]: IEEE, 2010, 3: 1577-1582.
  • 10GmSON J. The ecological approach to visual perception [M]. Boston: Houghton Mifflin, 1950.

二级参考文献5

共引文献9

同被引文献83

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2陈财雄,陈晓竹,范振涛.分块思想和码本模型的运动检测算法[J].中国计量学院学报,2012,23(2):125-130. 被引量:4
  • 3Dominguez H, Villegas O, Sanchez V, et al. The H. 264 video co-ding standard[J] . IEEE Potentials, 2014, 33(2):32-38.
  • 4Zhou Jie, Yan Bo, Gharavi H. Efficient motion vector interpolation for error concealment of H. 264/AVC[J] . IEEE Trans on Broadcasting, 2011, 57(1):75-80.
  • 5Asheri H, Rabiee H R, Pourdamghani N, et al. Multi-directional spatial error concealment using adaptive edge thresholding[J] . IEEE Trans on Consumer Electronics, 2012, 58(3):880-885.
  • 6Kumwilaisak W, Jay K C C. Spatial error concealment with sequence-aligned texture modeling and adaptive directional recovery[J] . Journal of Visual Communication and Image Representation, 2011, 22(2):164-177.
  • 7Kawulok M. Fast propagation-based skin regions segmentation in color images[C] //Proc of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. [S. l.] :IEEE Press, 2013:1-7.
  • 8MILDER M T W, BRUGGEMANN B, VAN G R, et al. Revisiting the optical properties of the FMO protein[J] . Photosynthesis Research, 2010, 104(2-3):257-274.
  • 9杨俊,王润生.基于计算机视觉的视频火焰检测技术[J].中国图象图形学报,2008,13(7):1222-1234. 被引量:26
  • 10翁木云,谢宇昕.一种改进的自适应质心跟踪算法[J].空军工程大学学报(自然科学版),2009,10(2):81-85. 被引量:10

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部