期刊文献+

基于热扩散理论的窗融合方法研究 被引量:3

Detection Windows Fusion Based on Theory of Heat Diffusion
下载PDF
导出
摘要 窗融合是滑动窗目标检测方法中的一个重要步骤。针对传统方法的缺陷,提出了一种新的窗融合方法。该方法把每个初始窗口当作系统中的一个位置,两个窗口的检测分数和重叠面积用来计算对应位置之间的热传导系数,最终利用线性各向异性热扩散条件下系统温度之和最大化问题来模拟窗融合工作。采用贪婪算法获得目标函数的近似最优解,相应的热源即为窗融合结果。在VOC2009目标数据库和INRIA行人数据库上的实验显示,该方法不仅能够删除重复检测,还可以排除误检以及防止相邻目标干扰。相比传统的非极大值抑制方法,该方法在不损失召回率的前提下显著地提升了目标的检测精度。 Detection windows fusion is an important step of object detection based on sliding window. To overcome shortcomings of traditional detection fusion methods, this paper proposes a novel one. The method treats every preliminary window as a location in system, and heat conductivity between two locations is calculated by detection scores and overlapping area of corresponding windows. Finally, the detection windows fusion task is modeled by temperature maximization on linear anisotropic heat diffusion, of which the temperature maximization with finite K heat sources corresponds to K final windows. This paper obtains a near-optimal solution of objective function by a greedy algorithm. Experimental results on VOC2009 and INRIA pedestrian datasets show that our method not only deletes overlapping detections, but also rejects false positives and prevents interference between adjacent objects. Compared with traditional non maximum suppression, our method can obtain higher detection precision without loss of recall rates.
作者 张抒 解梅
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第2期257-261,共5页 Journal of University of Electronic Science and Technology of China
基金 广东省科技计划项目(2011B031600004) 国家自然科学基金(61172117)
关键词 窗融合 线性各向异性扩散 非极大值抑制 目标检测 detection fusion linear anisotropic diffusion non maximum suppression (NMS) objectdetection
  • 相关文献

参考文献14

  • 1FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part based models[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
  • 2FERRARI V, JURIE F, SCHMID C. From images to shape models for object detection[J]. International Journal of Computer Vision, 2010, 87(3): 284-303.
  • 3NOWOZIN S, LAMPERT C. Global connectivity potentials for random field models[C]//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009.
  • 4FERRARI V, FEVRIER L, JURIE F, et al. Groups of adjacent contour segments for object detection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(1): 36-51.
  • 5DALAL N, TRIGGS B. Histogram of oriented gradients for human detection[C]//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005.
  • 6SHOTTON J, WINN J, ROTHER C, et al. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation[C]//Proc of the 10th European Conference on Computer Vision. Graz, Austria: [s.n.], 2006.
  • 7ALEXE B, DESELAERS T, FERRARI V. Measuring the objectness of image windows[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(1): 2189-2202.
  • 8TIAN Y M, LATECKI L J. From partial shape matching through local deformation to robust global shape similarity for object detection[C]//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011.
  • 9LAMPERT C H, BLASCHKO M B, HOFMANN T. Beyond sliding windows: Object localization by efficient subwindow search[C]//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE,2008.
  • 10ROWLEY H A. BALUJA S, KANADE T. Neural networks based face detection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,20(1): 22-38.

同被引文献28

  • 1Dollar P, Wojek C, Schiele B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 34(4) : 743-761.
  • 2Benenson R, Omran M, Hosang J, et al, Ten years of pe- destrian detection, what have we learned?. [C]// European Conference on Computer Vision (ECCV) . Zurich, Switzer- land: CVRSUAD workshop, 2014:613-627.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( CVPR ). USA: IEEE, 2005; 886-893.
  • 4Lira J J, Zitnick C L, Dolldr P. Sketch tokens, A learned mid level representation for contour and object detection[C]// IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR). USA: IEEE, 2013: 3158-3165.
  • 5Dolldr P, Appel R, Belongie S, et al. Fast feature pyramids for obieet detection[J]. IEEE Transactions on Pattern Analy sis and Machine Intelligence, 2014,36(8) :1532-1545.
  • 6Wang Xiaoyu, Tony X, Yan Shuicheng. An HOG-LBP human detector with partial occlusion handling[C]// i2th International Conference on Computer Vision (ICCV). Kyoto, Japan: IEEE, 2009: 32-39.
  • 7Dollar P,Tu Zhuowen, Perona P, etal. Integral channel fea- tures[C]// British Machine Vision Conference ( BMVC ). London: DBLP, 2009:1-11.
  • 8Friedman J, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting[J]. The Annals of Statistics, 2000, 28(2): 337-407.
  • 9Marin J,Vdzquez D, Lfpez A M, et al. Random forests of local experts for pedestrian detection[C]//IEEE Internation al Conference on Computer Vision (ICCV). USA: IEEE, 2013 : 2592-2599.
  • 10Ouyang Wanli, Wang Xiaogang. Joint deep learning for pedestrian detection[C]//IEEE International Conference on- Computer Vision (1CCV). USA: IEEE, 2013:2056-2065.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部