期刊文献+

结合异质性及分水岭变换的遥感影像分割方法 被引量:2

Segmentation for remote sensing image based on heterogeneity and watershed transformation
原文传递
导出
摘要 面向对象的遥感信息提取,首要任务是对遥感影像进行分割,分割的目的在于把原始图像分割成一些在空间上相邻、光谱相似的同质区域。传统的分水岭变换对噪声敏感,易产生过分割现象,不能直接适用于遥感影像的信息提取。本文利用非线性同组滤波方法(PGF)消除原始影像噪声,根据高分辨率遥感影像地物的异质性特征,对分水岭初始分割结果进行异质性准则合并。实验结果表明,该方法对高分辨率遥感影像的分割效果良好,能够适用于面向对象的信息提取。 This paper used nonlinear filtering method of PGF to eliminale image noise, and then merged the initial results of watershed transformation based on the heterogeneity of lhe bigh-resolution remote sensed image features. Results of experiments demonstrated that this method would be good for the high-resolution remote sensed image segmentation and could be applied in object-oriented information extraction.
出处 《测绘科学》 CSCD 北大核心 2014年第3期19-22,共4页 Science of Surveying and Mapping
基金 国家自然科学基金(40901229)
关键词 高分辨遥感影像 图像分割 PGF滤波 分水岭变换 异质性合并 high-resolution remote sensed image image segmentalion PGF filtering watershed transformation heterogeneity merging
  • 相关文献

参考文献10

  • 1A Pekkarinen. A method for the segementalion of very high spatial resolution images of forested landscapes [J]. Int. J. Remote Sensing. 2002,23C 14) : 2817-2836.
  • 2Chubey M S,Franklin S E,Wulder M A. Object-based A nalysis of Ikonos-2 Imagery for Extraclion of Forest In- ventory Parlmeters[J]. PE-RS, 2006,72 (/1 ) .. 383-394.
  • 3陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320. 被引量:245
  • 4杜凤兰,田庆久,夏学齐,惠凤鸣.面向对象的地物分类法分析与评价[J].遥感技术与应用,2004,19(1):20-23. 被引量:138
  • 5黄慧萍,吴炳方,李苗苗,周为峰,王忠武.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报,2004,8(1):68-74. 被引量:127
  • 6冈萨雷斯.数字图像处理(第2版)[M].北京:电子工业出版社,2003.
  • 7Vicenl l.,Soille P. Watersheds in Digital Space:An Ef- ficienl Algorithms Based on Immersion Simulation [C]//IEEE "l'ransactions on Pattern Analysis and Ma- chine Intellilaence, 1991,13(6) .. 58t 598.
  • 8Patrick De Smet,Pires R L. Implementation and Analy sis of an ()ptimized Rain Falling Watershed Algorithm [C]//Proceeding of SHE, 2000:759 766.
  • 9C Kenney, Y I)eng,B S Manjunath,G Hewer. Peer Group Image Enhancement [C]/IEEE TRANSACTI()NS ()N IMAGE PR(XTEqlNG. 2001,10 (2) : 326-334.
  • 10BaatzM, Schape A. Muhiresolution Segmemalion An Optimization Approach for High Quality Muhi-scale linage Segmentation[C]//Strobl, Angewandte Geogra- phische lnformations Verarheitung X I. Beilrage Zum A GTT2Synlposiurn. Salzburg. Karlsruhe: Herbert With mann Verlag, 2000 : 12-23.

二级参考文献15

  • 1Iio Y,Omatu S.Category Classification Method Using a Self-organizing Neural Network[J].International Journal of Remote Sensing,1997,18(4):829-845
  • 2Ricotta C.Evaluating the Classification Accuracy of Fuzzy Thematic Maps with a Simple Parametric Measure[J].International Journal of Remote Sensing,2004,25(11):2 169-2 176
  • 3Vander S C J,Jong S M,Roo A P J.A Segmentation and Classification Approach of IKONOS-2 Imagery for Land Cover Mapping to Assist Flood Risk and Flood Damage Assessment[J].International Journal of Applied Earth Observation and Geoinformation,2003 (4):217-229
  • 4Huang C,Davis L S,Townshend J R G.An Assessment of Support Vector Machines for Land Cover Classification[J].International Journal of Remote Sensing,2002,23(4):725-749
  • 5Magnussen S,Boudewyn P,Wulder M.Contextual Classification of Landsat TM Images to Forest Inventory Covertypes[J].International Journal of Remote Sensing,2004,25(12):2 421-2 440
  • 6Volker W.Object-based Classification of Remote Sensing Data for Change Detection[J].ISPRS Journal of Photogrammetry & Remote Sensing,2004 (58):225-238
  • 7eCognition,User Guide.Definiens Imaging GmbH,Munich[OL].http://www.definiensimaging.com/product.htm,2002
  • 8Benz U C,Peter H,Gregor W,et al.Multi-resolution,Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information[J].ISPRS Journal of Photogrammetry & Remote Sensing,2004 (58):239-258
  • 9徐青山,赵凤生,魏合理,刘庆红.遥感模糊图像分割与像元分析[J].光电子技术与信息,1998,11(5):21-24. 被引量:6
  • 10文沃根.高分辨率IKONOS卫星影像及其产品的特性[J].遥感信息,2001,23(1):37-38. 被引量:27

共引文献470

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部