期刊文献+

布鲁塞尔子的柱对称定态结构(二)——定态解的计算和分析

Column Symmetric State Structures of Brusselator Model( Ⅱ) ——The Calculation and Analysis of the Steady State Solution
下载PDF
导出
摘要 本文在布鲁塞尔子的柱对称定态解构造的基础上,从布鲁塞尔子的反应扩散方程出发,利用稳定性分析和分支点理论详细地计算了布鲁塞尔子的柱对称定态解.计算结果表明,布鲁塞尔子的空间耗散结构呈柱对称,不仅随r变化,还受到z的调制;当第一分支点对应的参数kn'=k1,m'=1时,在柱的中心出现一个高浓度区.该研究结果对于了解演化着的生物化学和生命体系中的柱型结构具有一定的指导意义. On the basis of the construction of the steady state solution, we calculated the column symmetric state structures of Brusselator Model by using the bifurcation theory from the reaction-diffusion equation of the Brusselator. The results show that its spatial dissipative structure presents the column symmetric ordered structure and changes with r andz, if the parameters of the first branch point correspond to k n' = k1 , m' = 1, there will be a high concentrative range in the centre of the column. The conclusions provide a useful reference for the evolution of the practical systems, especially the column-type structures of biological systems.
出处 《山西师范大学学报(自然科学版)》 2014年第1期60-65,共6页 Journal of Shanxi Normal University(Natural Science Edition)
基金 山西省软科学项目(2011041015-01) 教育部高等学校博士点专项基金(20121404110004) 山西省青年科技基金(2011021008-1) 山西省人力资源和社会保障部优秀人才专项基金
关键词 布鲁塞尔子 柱对称结构 定态解 brusselator column symmetric steady state solution
  • 相关文献

参考文献14

  • 1Prigogine I, Lefever R. Symmetry breaking instabilities in dissipative systems. I1 [ J ]. J Chem Phys, 1968, (48) :1695 - 1698.
  • 2Prigogine I. Structure dissipation and life in from theoretical physics to Biology [M]. Marois: Amsterdam, Nollh-Holland, 1969.23 -52.
  • 3Glansdorff P, Prigogine I. Thermodynamic theroy of structure, stability and fluctuations [ M ]. Wiley : New York, 1971. 293 ~ 298.
  • 4Tyson J. Some further studies of nonlinear oscillations in chemical systems [ J ]. J Chem Phys, 1973, (58) :3919 -3930.
  • 5Auchmuty J F G, Nicolis G. Bifurcation analysis of nonlinear reaction-diffusion equations-L Evolution equations and the steady state solutions [J]. Bull Math Biol, 1975, (37) : 323 -365.
  • 6Herschkowitz-Kaufman M. Bifurcation analysis of nonlinear reaction-diffusion equations-ll. Steady state solutions and comparison with numerical simulations [ J ]. Bull Math Biol, 1975, (37) :589 - 636.
  • 7Marek M, Svobodov6 E. Nonlinear phenomena in oscillatory systems of homogeneous reactions-experimental observations [ J ]. Biol Chem, 1975, (3) :263 -273.
  • 8Auchmuty J F G, Nicolis G. Bifurcation analysis of reaction-diffusion equations-IIl. Chemical oscillations [ J ]. Bull Math Biol, 1976, (38) : 325 - 350.
  • 9Nieolis G, Pfigogine I. Self-Organization in nonequilibrium systems : from dissipative structures to order through fluctuations [ M ]. Wiley : New York, 1977. 82-96.
  • 10张纪岳,郭治安.布鲁塞尔子的球对称结构[J].物理学报,1983,(32):1574-1585.

二级参考文献6

  • 1张纪岳,郭治安.布鲁塞尔子的球对称结构[J]物理学报,1983(12).
  • 2张纪岳,郭治安.布鲁塞尔子的球对称结构[J]物理学报,1983(12).
  • 3张纪岳,郭治安.布鲁塞尔子的球对称结构[J]物理学报,1983(12).
  • 4郑国锠.细胞融合与生物进化[J]科学通报,1976(06).
  • 5张进军.三分子模型的球对称破缺(Ⅰ)[J].山西师大学报(自然科学版),1997,11(4):32-37. 被引量:5
  • 6张进军.三分子模型的球对称破缺(Ⅱ)[J].山西师大学报(自然科学版),1998,12(2):35-38. 被引量:5

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部