期刊文献+

正交曲线坐标系基向量的二阶偏导数

The Second Order Partial Deaivatives of Base Vectors in Orthogonal Cuavilinear Coordinate System
下载PDF
导出
摘要 研究了正交曲线坐标系基向量的二阶偏导数,运用基变换的单位正交性给出了当坐标函数三阶偏导数连续时拉梅系数满足的两个偏微分方程,由此证明了基向量的二阶混合偏导数与求导顺序无关,推导了基向量的二阶偏导数公式。 The second order partial derivatives of base vectors in orthogonal curvilinear coordinate system are studied in this pa per. Two partial differential equations in which the Lame coefficients satisfied under the circumstances that the third order partial derivatives of the coordinate functions continuous are given by using the unit orthogonality of the change of base. Thus the asser tion that the second order mixed partial derivatives are independence with the derivation order are demonstrated. The second order partial derivative formulas of base vectors are pushed out.
作者 陈功 朱文辉
出处 《盐城工学院学报(自然科学版)》 CAS 2014年第1期22-25,共4页 Journal of Yancheng Institute of Technology:Natural Science Edition
基金 复旦大学曦源项目(12190) 江苏省高等教育教学改革研究课题重点项目(2011JSJG085)
关键词 正交曲线坐标系 基向量 二阶偏导数 求导顺序 拉梅系数 orthogonal curvilinear coordinate system base vector second order partial derivative order of derivation Lame coefficient
  • 相关文献

参考文献8

  • 1Erturk E,Gǒkcǒl C.Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers[J].Int.J.Numer.Meth.Fluids,2006(4):421-436.
  • 2Kolesnikov A,Baker A J.Efficent implementation of high order methods for the advection-diffusion equation[J].Comput.Methods Appl.Mech.Engrg,2000(2):701-722.
  • 3Tian Z F,Ge Y B.A fourth-order compact finite difference scheme for the steady streamfunction-vorticity formulation of the Navier-Stokes/Bonssinesq equations[J].Int.J.Numer.Meth.Fluids,2003(5):495-518.
  • 4Matthews P C.Vector Calculus[M].London:Springer-Verlag,1998.
  • 5Gupta M M,Kalita J C.A new paradigm for solving Navier-Stokes equations:streamfunction-velocity formulation[J].J.Comput.Phys,2005(1):52-68.
  • 6Radhakrishna Pillai A C.Fourth-order exponential finite difference methods for boundary value problems of convective diffusion type[J].Int.J.Numer.Meth.Fluids,2001(1):87-106.
  • 7周光炯,严宗毅.流体力学(下册)[M].2版.北京:高等教育出版社,2000:107.
  • 8Zhang J.Preconditioned iterative methods and finite difference schemes for convection-diffusion[J].Appl.Math.Comput,2000(1):1 130.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部