摘要
研究了正交曲线坐标系基向量的二阶偏导数,运用基变换的单位正交性给出了当坐标函数三阶偏导数连续时拉梅系数满足的两个偏微分方程,由此证明了基向量的二阶混合偏导数与求导顺序无关,推导了基向量的二阶偏导数公式。
The second order partial derivatives of base vectors in orthogonal curvilinear coordinate system are studied in this pa per. Two partial differential equations in which the Lame coefficients satisfied under the circumstances that the third order partial derivatives of the coordinate functions continuous are given by using the unit orthogonality of the change of base. Thus the asser tion that the second order mixed partial derivatives are independence with the derivation order are demonstrated. The second order partial derivative formulas of base vectors are pushed out.
出处
《盐城工学院学报(自然科学版)》
CAS
2014年第1期22-25,共4页
Journal of Yancheng Institute of Technology:Natural Science Edition
基金
复旦大学曦源项目(12190)
江苏省高等教育教学改革研究课题重点项目(2011JSJG085)
关键词
正交曲线坐标系
基向量
二阶偏导数
求导顺序
拉梅系数
orthogonal curvilinear coordinate system
base vector
second order partial derivative
order of derivation
Lame coefficient