期刊文献+

不对称势垒体系中分子分离的随机行走模拟

Random Walk Simulation of an Asymmetric Obstacle Sieve for Continuous Molecular Separation
下载PDF
导出
摘要 利用微尺度受限空间随机行走方法模拟了分子的扩散过程.研究表明,扩散系数越大,粒子越显著地偏离驱动速度的方向;通过选择合适的驱动速度,调控不同组分偏离驱动方向的概率差,从而达到更理想的分离效果.此外,讨论了分子运动的随机分布特征对分析样品带展宽效应的影响. In order to dynamically track the diffusing molecules in the micro-separation system, and further to understand its influence on separation performance thoroughly, we have developed a software based on the ran-dom walk theory in the confined space, with which the diffusion process in an asymmetric obstacle sieve has been simulated. The results showed that the molecules which own larger diffusion coefficients would be devi-ated from the direction of the driving speed by the asymmetric obstacles more significantly. So as to achieve better separation effect, we should select appropriate drift velocity and regulate the probability difference of the different constituents' deviating from the driving direction. In addition, the band broadening effect and pre-dicted the performance of the separation sieve with different length were discussed. The simulation method pro-posed in this work has been instructive for the development of micro-separation devices and the optimization of operating parameters.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第4期818-824,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21121091 51071084 21273113) 国家科技支撑计划项目(批准号:2012BAF03B05) 南京工业大学材料化学工程国家重点实验室开放课题基金(批准号:KL10-11)资助~~
关键词 不对称势垒 扩散 分离 随机行走模拟 Asymmetric obstacle Diffusion Separation Random walk simulation
  • 相关文献

参考文献28

  • 1Han J. Y., Fu J. P., Schoch R. B., Lab Chip, 2008, 8(1), 23—33.
  • 2Takimoto B., Nabika H., Murakoshi K., J. Phys. Chem. C, 2009, 113(8), 3127—3132.
  • 3Nabika H., Takimoto B., Iijima N., Murakoshi K., Electrochim. Acta, 2008, 53(21), 6278—6283.
  • 4Takimoto B., Nabika H., Murakoshi K., Nanoscale, 2010, 2(12), 2591—2595.
  • 5Nykypanchuk D., Strey H. H., Hoagland D. A., Science, 2002, 297(8), 987—990.
  • 6Fu J. P., Schoch R. B., Stevens A. L., Tannenbaum S. R., Han J. Y., Nature Nanotech., 2007, 2, 121—128.
  • 7Huang L. R., Cox E. C., Austin R. H., Sturm J. C., Anal. Chem., 2003, 75(24), 6963—6967.
  • 8Motegi T., Nabika H., Murakoshi K., Langmuir, 2012, 28(16), 6656—6661.
  • 9Ritchie K., Shan X. Y., Kondo J., Iwasawa K., Fujiwara T., Kusumi A., Biophys. J., 2005, 88(3), 2266—2277.
  • 10Ernst D., Kohler J., Phys. Chem. Chem. Phys., 2013, 15(3), 845—849.

二级参考文献53

  • 1史红兵,于养信,高光华.电解质溶液自扩散系数的布朗动力学模拟[J].高等学校化学学报,2004,25(12):2317-2321. 被引量:2
  • 2胡道中,陈实,王子冬,赵淑红.MH电极中氢扩散系数的测定及其应用[J].物理化学学报,2006,22(9):1151-1154. 被引量:2
  • 3熊云武,黄冠华,黄权中.非均质土柱中溶质迁移的连续时间随机游走模拟[J].水科学进展,2006,17(6):797-802. 被引量:10
  • 4Pearson K,The problem of the random walk[J]. Nature,1905,1865(72) : 294.
  • 5Beraldi R, Baldoni R, Prakash R. A biased random walk routing protocol for wireless sensor networks: the lakewarm potato protocol[J]. IEEE Transcation on Mobile Computer,2010,9(ll) : 1649-1661.
  • 6Shalchi A. Random walk of magnetic field lines in dynamical turbulence: A field line tracing method. I. Slab turbulence [J]. Phys Plasmas, 2010,17(8): 082902.
  • 7Gordon M B. A random walk in the literature on criminality: A partial and critical view on some statistical analyses and modelling approaches [J]. Eur J Appl Math, 1010(21) : 283-306.
  • 8Botha I, Pretorius M. Forecasting the exchange rate in South Africa: A comparative analysis challenging the random walk model [J]. African Journal of Business Management, 2009,3(9) : 486-494.
  • 9Blaauw M, Bennett K D, Christen J A. Random walk simulations of fossil proxy data[J]. Holocene,2010 (20) : 645-649.
  • 10Takimoto B, Nabika H, Murakoshi K. Tracking single molecular diffusion on glass substrate modified with periodic Ag nano-architecture[J]. Japanese Journal of Applied Physics C,2006,45(7) : 6039-6042.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部