期刊文献+

锂电池负极α-Fe2_O_3纳米粒子制备及电化学性能研究 被引量:2

Preparation of α- Fe_2O_3 Nanoparticles as Anode Materials and Its Electrochemical Characteristic Research for Lithium ion Battery
下载PDF
导出
摘要 以高分子微球聚苯乙烯(PST)和聚甲基丙烯酸甲酯(PMMA)作为组装体,采用自组装方法在PST和PMMA微球表面自组装制备纳米α-Fe2O3电池负极材料,组装温度为PST(T=70℃)和PMMA(T=60℃)聚合温度。结果显示,采用PST作为组装体获得的α-Fe2O3纳米粒子颗粒更细,约70nm,粒径更均匀,分散性更好;而PMMA组装体获得的纳米粒径约80nm,分散性相对较差,主要原因是PMMA微球质地较软,易发生变形,而使α-Fe2O3纳米粒子吸附在PMMA表面不均匀,在热处理过程中受热不均导致α-Fe2O3纳米粒子尺寸不均,且有团聚趋势。XRD显示,两种组装体获得的均为纯相α-Fe2O3结构。电化学性能显示,采用PST作为组装体制备的纳米α-Fe2O3作为电池负极电化学性能明显优于PMMA组装体。 α-Fe2O3 nanopatticles as an anode material for lithium ion battery were prepared by self-assembly method on the surfaces of polystyrene (PST) and poly (methyl methacrylate) (PMMA) microspheres which were regarded as self-assembly bodies, the reaction temperature were the polymerization temperature, which was 70℃ for PST synthesis, 60℃ for PMMA synthesis. The results showed that α-Fe2O3 nanoparticles were finer when PST was used as self- assembly body. The nanoparticle size was about 70 nm with good uniformity and excellent dispersion. However, the size was 80nm without excellent dispersion when PMMA was used as self-assmebly body. The main reason was that PMMA microsphers were very soft, easy to be distorted which caused to α-Fe2O3 nanoparticles absorpt and were thermo-treated disuniformly on its surfaces, also there was reuniting phenomenon. XRD analyses showed that the samples prepared by the two self-assembly methods were pure α-Fe2O3 structures. Electrochemical analyses showed that the characteristic of α-Fe2O3 structures with PST as self-assembly body was exceller than that of α-Fe2O3 nanoparticles with PMMA as self-assembly body.
出处 《湖北第二师范学院学报》 2014年第2期1-5,共5页 Journal of Hubei University of Education
基金 湖北省高等学校优秀中青年科技创新团队建设计划项目(T201225) 湖北第二师范学院优秀科研教师团队建设计划项目(2012K203) 湖北省教育科学"十二五"规划项目(2011B232) 湖北第二师范学院校管教学研究重点项目(2011007) 湖北第二师范学院校级化学重点学科建设计划项目(2013XZXK05) <植物抗癌活性物质提纯与应用>湖北省重点实验室项目
关键词 锂电池 负极α-Fe2O3 PST PMMA 组装制备 电化性能 lithiumion buttery α-Fe2O3 as anode electrode polystyrene poly ( methyl methacrylate ) self-assembly preparation electrochemical characteristics
  • 相关文献

参考文献17

  • 1Tong G X,Guan J G,Xiao Z D,et al.In-situ generated gas bubble-assisted modulation of the morphologies,photocatalytic and magnetic properties of ferric oxide nanostructures synthesized by thermaldecomposition of iron nitrate[J].J.Nanopart Res.,2010,DOI:10.1007/s11051-010-9897-2.
  • 2Zhu Y W,Yu T,Sow C H,et al.Efficient field emission from α-Fe2O3 nanoflakes on an atomic force microscope tip[J].Appl.Phys.Lett.,2005,87:023103-023105.
  • 3童国秀,官建国,吴文华,李良超,关瑶,华桥.海胆状α-Fe_2O_3纳米材料的制备与电化学性能[J].中国科学:技术科学,2010,40(9):1114-1120. 被引量:1
  • 4Reddy M V,Yu T,Sow C H,et al.α-Fe2O3 nanoflakes as an anode materials for Li-ion batteries[J].Adv Funct Mater,2007,17:2792-2799.
  • 5Chen J,Xu L N,Li W Y,et al.α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J].Adv Mater,2005,17:582-585.
  • 6Hu X,Yu J C,Gong J,et al.α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties[J].Adv.Mater.,2007,19:2324-2329.
  • 7Tartaj P,González-Carreno T,Serna C J.From hollow to dense spheres:Control of dipolar interactions by tailoring the architecture in colloidal aggregates of superparamagnetic iron oxide nanocrystals[J].Adv Mater,2004,16:529-533.
  • 8Zheng Y,Cheng Y,Wang Y,et al.Quasicubic Fe2O3 nanoparticles with excellent catalytic performance[J].J Phys Chem B,2006,110:3093-3097.
  • 9Tang B,Wang G,Zhuo L,et al.Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods[J].Inorg.Chem.,2006,45:5196-5200.
  • 10Liu L,Kou H Z,Mo W,et al.Surfactant-assisted synthesis of α-Fe2 O3 nanotubes and nanorods with shape-dependent magnetic properties[J].J.Phys.Chem.B.,2006,110:15218-15223.

二级参考文献31

  • 1梁霍秀,边玉珍,叶世海,王永龙,高学平,宋德瑛.氧化铁的制备及其电化学性能研究[J].南开大学学报(自然科学版),2006,39(3):43-46. 被引量:9
  • 2邱广明,杨春雁,孙宗华.单分散亚微米级磁性微球的合成[J].功能高分子学报,1996,9(4):565-571. 被引量:22
  • 3Li W Y, Xu L N, Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv Funct Mater, 2005, 15:851-857.
  • 4Luo X W, Deng D, Lee J Y, et al. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater, 2008, 20:258-262.
  • 5Tong G X, Guan J G, Xiao Z D, et al. In-situ generated gas bubble-assisted modulation of the morphologies, photocatalytic and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate. J Nanopart Res, 2010, DOI: 10.1007/ s 11051-010-9897-2.
  • 6Zhu Y W, Yu T, Sow C H, et al. Efficient field emission from α-Fe2O3 nanofiakes on an atomic force microscope tip. Appl Phys Lett, 2005, 87:023103-023105.
  • 7Reddy M V, Yu T, Sow C H, et al. α-Fe2O3 nanoflakes as an anode materials for Li-ion batteries. Adv Funct Mater, 2007, 17:2792-2799.
  • 8Chen J, Xu L N, Li W Y, et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Adv Mater, 2005, 17:582-585.
  • 9Larcher D, Masquelier C, Bonnin D, et al. Effect of particle size on lithium intercalation into ot-Fe203. J Electrochem Soc, 2003, 150: A133- A139.
  • 10Hu X, Yu J C, Gong J, et al. α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater, 2007, 19:2324-2329.

共引文献6

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部