期刊文献+

二维线性大间距判别分析及其在步态识别中的应用

2D linear maximum margin discriminant analysis and its application to gait recognition
下载PDF
导出
摘要 提出一种二维线性大间距判别分析(Two dimensional linear maximum margin discriminant analysis,2DLMMDA)的投影算法。该算法一方面采用了有效且稳定的大间距优化准则,引入了Laplacian矩阵,保持了特征矩阵的流形结构,且优化域为Laplacian类间散度与Laplacian类内散度之差,能克服Fisher准则带来的小样本问题;另一方面,采用了具有监督信息的判别分析,大大地提高了识别率。为了验证所提出的算法对特征提取的有效性,选择最近邻分类器进行特征分类,最后通过在CASIA(B)步态库上实验。实验结果表明,文中提出的算法具有更高的识别率和识别速度。 In this paper, a novel projection algorithm named 2D linear maximum margin discriminant analysis is proposed. The efficient and stationary maximum margin optimization criterion was used in this algorithm, which introduces Laplacian matrix in order to maintain the manifold structure of the feature matrix, and the optimization criterion is the difference of the Laplacian inter-class scatter and Laplacian intra-class scatter. This algorithm can avoid the small sample size (SSS) problem brought by the Fisher criterion. The discriminant analysis is adopted, which has supervision information and greatly improves the recognition accuracy. In order to verify the efficiency of the proposed method for feature extraction, experiment with the nearest neighborhood (NN) classifier on the CASIA(B) database is conducted. The results show that the proposed method gains a higher recognition rate and faster speed.
出处 《应用科技》 CAS 2014年第1期11-15,共5页 Applied Science and Technology
基金 国家自然科学基金资助项目(61201370) 高等学校博士学科点专项科研基金资助项目(20120131120030) 中国博士后科学基金面上资助项目(2013M530321) 山东大学自主创新基金资助项目(2012GN043 2012DX007)
关键词 特征提取 二维线性大间距判别分析 拉普拉斯矩阵 步态识别 feature extraction two dimensional linear maximum margin discriminant analysis Laplacian matrix gait recognition
  • 相关文献

参考文献20

  • 1CARREIRA-PERPINAN M A. A review of dimension reduction techniques[R]. Sheffield: University of Sheffield Tech. Rep CS-96-09, 1997: 1-69.
  • 2FODOR I K. A survey of dimension reduction techniques[R]. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 2002: 1-18.
  • 3ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.
  • 4HYVINEN A. Survey on independent component analysis[J]. Neural Computing Surveys, 1999, 2: 94-128.
  • 5HYVARINEN A, KARHUNEN J, OJA E. Independent component analysis[J]. Studies in Informatics and Control, 2002, 11(2): 205-207.
  • 6BELHUMEUR P N, HESPANHA J P, KRIENGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection[J]. IEEE Trans Pattern anal Mach Intell, 1997(7): 711-720.
  • 7YANG J, ZHANG D, FRANGI A F. Two-dimensional PCA: a new approach to appearance based face representation and recognition[J]. IEEE Trans Pattern anal Mach Intell, 2004, 26(1): 131-137.
  • 8LI M, YUAN B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 2005, 26(5): 527-532.
  • 9LI J, JANARDAN R, LI Q. Two-dimensional linear discriminant analysis[J]. Advances in Neural Information Processing Systems, 2004, 17: 1569-1576.
  • 10CHEN S, ZHAO H, KONG M. 2DLPP: a two-dimensionalof locality preserving projections[J]. Neuro Computing, 2007, 70(4/5/6): 912-921.

二级参考文献127

  • 1彭彰,吴晓娟,杨军.基于肢体长度参数的多视角步态识别算法[J].自动化学报,2007,33(2):210-213. 被引量:10
  • 2Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532.
  • 3Zuo W M, Zhang D D, Wang K. Bidirectional PCA with assembled matrix distance metric for image recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(4): 863-872.
  • 4He X F, Cai D, Niyogi P. Tensor subspace analysis. In: Proceedings of the 19th Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2006. 499-506.
  • 5Wang H, Yan S C, Huang T, Tang X O. A convergent solution to tensor subspace learning. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence. Hyderabad, India: Morgan Kaufmann Publishers, 2007. 629-634.
  • 6Zhang T H, Yang J, Zhao D L, Ge X L. Linear local tangent space alignment and application to face recognition. Neurocomputing, 2007, 70(7--9): 1547-1553.
  • 7Yan S C, Xu D, Zhang B Y, Zhang H J, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
  • 8Yang W K, Wang J G, Ren M W, Yang J Y, Zhang L, Liu G H. Feature extraction based on Laplacian bidirectional maximum margin criterion. Pattern Recognition, 2009, 42(11): 2327-2334.
  • 9Turk M A, Pentland A P. Face recognition using eigenfaces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Maui, USA: IEEE, 1991. 586-591.
  • 10Yang J, Zhang D, Yong X, Yang J Y. Two-dimensional discriminant transform for face recognition. Pattern Recognition, 2005, 38(7): 1125-1129.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部