期刊文献+

利用组稀疏特性的宽带压缩频谱感知 被引量:4

Compressive Wideband Spectrum Sensing Using Group Sparsity
下载PDF
导出
摘要 基于认知无线电的动态频谱接入需对宽带信道进行频谱感知,而越来越高的采样速率日益成为宽带频谱感知的瓶颈。压缩感知作为一种新的信号获取技术为亚奈奎斯特采样速率下的宽带频谱感知提供了一种可行方案。在相关应用场景中,如果能够挖掘相关先验信息并在重构算法中整合这些信息,将大幅提高压缩感知的性能。本文基于压缩感知技术,利用信道的划分信息及宽带信号的组稀疏特性,提出了一种组稀疏贪婪算法GOMP。该方法在成熟的贪婪算法基础上,利用子信道内多频点的组测量信息,根据组测量的概率分布特性来识别宽带信道的活动子信道。这种组测量识别方式使算法能以较少的观测数据实现对宽带信道的快速准确感知,极大地降低了宽带频谱感知所需的采样速率。实验结果表明:该算法比传统的OMP算法及BP算法不仅具有更好的重构效果及频谱检测性能,而且具有更好的压缩性能及实时性能。 Wideband dynamic spectrum access based on cognitive radio has encountered bottleneck in the required speed of traditional sampling techniques.Compressive sensing (CS) emerged as an alternative candidate for wideband spectrum sensing at sub-Nyquist Sampling rates.Furthermore,exploiting and incorporating the prior information of related signals will significantly reduce the sampling rate required by CS.Considering the sub-channel locations are known in advance,this paper proposes a new greedy algorithm,called Group-sparsity Orthogonal Matching Pursuit (GOMP),to reconstruct the wideband spectrum estimation by exploiting the characteristic of group sparsity corresponding to the channel distribution.The proposed algorithm based on the principle of the sophisticated greedy algorithm Orthogonal Matching Pursuit (OMP) incorporates a multipoint measurement of sub-channels to identify the signal support where active primary users are located.The multipoint measurement strategy converts the components of sub-channels into a L2-regularization,and then introduces the statistical characteristic of the regularization to identify the active sub-channels.This endows the algorithm with accuracy and robustness for signal support identification and spectrum reconstruction.A comparison experiment shows the proposed algorithm outperforms traditional OMP algorithm and the famous Basis Pursuit (BP) algorithm in terms of reconstruction errors and detection accuracy with fewer measurements.Moreover,it is faster than the two previous algorithms.
作者 吴宏林 王殊
出处 《信号处理》 CSCD 北大核心 2014年第3期355-362,共8页 Journal of Signal Processing
基金 国家自然科学基金(60933012)
关键词 宽带频谱感知 压缩感知 组稀疏 贪婪算法 wideband spectrum sensing compressive sensing group sparsity greedy algorithm
  • 相关文献

参考文献18

  • 1Federal Communications Commission. Spectrum Policy Task Force: Report ET Docket no. 02-135[RJ. FCC, 2002.
  • 2Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 ( 4) : 1289-1306.
  • 3Candes EJ, RombergJ and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly in?complete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52 (2) : 489-509.
  • 4Tian Z and Giannakis G B. Compressed Sensing for Wide?band Cognitive Radios[CJ II International Conference on Acoustics, Speech and Signal Processing, 2007: IV 1357- IV 1360.
  • 5Sakarya FA, Nagel G S, Tran L H, and MolnarJ A. Wideband compressed sensing for cognitive radios[CJ II IEEE Conference on Military Communications, 2011: 31-36.
  • 6Nakarmi U and Rahnavard N.Joint wideband spectrum sensing in frequency overlapping cognitive radio networks using distributed compressive sensing[CJ I I IEEE Confer?ence on Military Communications, 2011: 1035-1040.
  • 7Candes EJ, RombergJ and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Com?munications on Pure and Applied Mathematics, 2006, 59: 1207-1223.
  • 8TroppJ A and Gilbert A C. Signal Recovery from Ran?dom Measurements via Orthogonal Matching Pursuit[J] . IEEE Transactions on Information Theory, 2007, 53 ( 12) : 4655-4666.
  • 9Needell D and Tropp 1. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2008, 26: 301-321.
  • 10Liu Y and Qun W. Generalized Block Sparse Constraint Based Compressive Wideband Spectrum Sensing for Cogni?tive Radio[EB/OL]. http://arxiv.orglabsll006. 2055, 2010,6.

二级参考文献25

  • 1Federal Communications Commission. Spectrum Policy Task Force : Report ET Docket no. 02-135 [ R]. FCC ,2t302.
  • 2Haykin S. Cognitive radio: brain-empowered wireless communications[ J]. IEEE Journal on Selected Areas in Communications, Feb. ,2005,23 (2) :201-220.
  • 3Donoho D L. Compressed sensing[ J]. IEEE Transactionson Information Theory, 2006,52 (4) : 1289-1306.
  • 4Cands E J, Romberg J and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incom- plete frequency information [ J ]. IEEE Transactions on In- formation Theory,2006,52(2) :489-509.
  • 5Tian Z and Giannakis G B. Compressed Sensing for Wide- band Cognitive Radios [ C ] JJ International Conference on Acoustics, Speech and Signal Processing. Hawaii: 1EEE, 2007:IV 1357-IV 1360.
  • 6Polo Y L, Wang Y, Pandharipande A and Leus G. Com- pressive Wide-Band Spectrum Sensing[ C ]// Internation- al Conference on Acoustics, Speech and Signal Process- ing. Taipei : IEEE ,2009 :2337-2340.
  • 7Liang J, Liu Y, Zhang W. , Xu Y, Gan X and Wang X. Joint Compressive Sensing in Wideband Cognitive Net- works[ C ] //J Wireless Communications and Networking Conference. Sydney : IEEE, April 2010 : 1-5.
  • 8Tropp J A and Gilbert A C. Signal Recovery from Ran- dom Measurements via Orthogonal Matching Pursuit [ J ]. IEEE Transactions on Information Theory, Dec. 2007,53 (12) :4655-4666.
  • 9Chen S S, Donoho D L and Saunders M A. Atomic de- composition by basis pursuit [ J ]. SIAM review, 2001,43 ( 1 ) : 129-159.
  • 10Vaswani N and Lu W. Modified-CS: Modifying compres- sive sensing for problems with partially known support [J]. IEEE Transactions on Signal Processing,2010,58 (9) :4595-4607.

共引文献1

同被引文献53

  • 1杨玺,樊晓平.基于仿生小波变换和自适应阈值的语音增强方法[J].控制与决策,2006,21(9):1033-1036. 被引量:6
  • 2Joseph Mitola III, Gerald Q M. Cognitive Radio: Making Software Radios More Personal [ J ]. IEEE Personal Com- munications, 1999,6 (4) : 13-18.
  • 3You C, Kwon H, Heo J. Cooperative TV Spectrum Sens- ing in Cognitive Radio for Wi-Fi Networks [ J ]. IEEE Transactions on Consumer Electronics, 2011, 57 ( 1 ) : 62-67.
  • 4Erik A, Geert L, Erik G L, et al. Spectrum Sensing for Cognitive Radio: State-of-the-art and Recent Advances [J]. IEEE Signal Processing Magazine, 2012, 29(3): 101-116.
  • 5Lopez M, Casadevall F. Improved Energy Detection Spec- trum Sensing for Cognitive Radio[ J]. IET Journal of Com- munications, 2012, 6(8) : 785-796.
  • 6Ali R, Ahmad A, Hussain B, et al. Cooperative Cogni- tive Network: Performance Analysis of Cyclostationary Spectrum Detection[A]. Proceeding of IEEE Internation- al Conference on Emerging Technologies [ C ]//Islama- bad : IEEE Conference and Publications, 2012 : 1-5.
  • 7Pu W, Sahinoglu Z, Man-on P. Persymmetric Parametric Adaptive Matched Filter for Muhichannel Adaptive Signal Detection[ J]. IEEE Transactions on Signal Processing, 2012, 60(6) : 3322-3328.
  • 8Zeng Y, Liang Y C. Covariance Based Signal Detections for Cognitive Radio[ J ]. IEEE Transactions on Communi- cations, 2009, 57 (6) : 1784-1793.
  • 9Kumar K S, Saravanan R, Muthaiah R. Cognitive Radio Spectrum Sensing Algorithms Based on Eigenvalue and Covariance Methods [ J ]. International Journal of Engi- neering and Technology, 2013, 5 (2) :594-601.
  • 10Hou S J, Qiu R, Browning P J, et al. Spectrum Sensing in Cognitive Radio with Robust Principle Component Anal- ysis [ g]. Proceeding of IEEE International Waveform Di- versity and Design Conference [ C ]//Lihue : USA, 2012.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部