摘要
针对含强噪声周期信号的检测,提出基于混沌振子结合集合经验模式分解降噪的检测新方法;针对相位差对检测结果的影响,提出正反导入的检测方法,该方法能有效克服由相位差造成的漏检现象。对仿真信号和故障轴承振动信号的检测效果表明,混沌振子结合集合经验模式分解降噪的方法能有效检测含在强噪声中周期信号,进一步提高了混沌振子对周期信号的检测能力和对噪声的免疫力。
For the detection of periodic signal with strong noise, a new method was proposed based on the chaotic oscillator with ensemble empirical mode decomposition de-noising. In view of the phase difference influence on detection results, a positive and ~legative import method was put forward to solve it, which can effectively overcome the omission phenomenon. The detection re- suits of simulation signal and the fault of bearing vibration signal showed that the method can successfully detect the periodic signal in strong noise and enhances the chaotic oscillator detection ability to periodic signal and immunity to noise further.
出处
《电子技术应用》
北大核心
2014年第4期133-136,140,共5页
Application of Electronic Technique
基金
国家自然科学基金(61174106)
关键词
混沌振子
周期信号检测
集合经验模式分解
振动信号
chaotic oscillator
periodic signal detection
ensemble empirical mode decomposition
vibration signal