期刊文献+

基于BPT分割的SAR与可见光图像配准方法 被引量:2

SAR and Visible Light Image Registration Meth Based on the BPT Segmentation
下载PDF
导出
摘要 提出一种基于BPT(二叉划分树)分割的SAR图像与可见光图像的配准方法,利用BPT的分层区域合并法将图像分成不同灰阶的ROI(感兴趣区域),分别提取重心当作控制点,然后采用独立距离作为相似性测度进行进一步的精校正,最后选择多项式模型以及双线性插值法进行匹配。实验表明:该算法较传统的边缘检测方法提取区域重心省去很多后续的形态学处理工作,具有更准确的定位,达到手动配准的精度。 Based on a kind of BFF ( binary classification tree) segmentation, SAR image and visible light image registration method was proposed. BPT of hierarchical region merging method is used to divide the image into different grayscale ROI (area of interested). Then we extracted the center of gravity respec tively as control points, used independent distance as similarity measure for further correction, and finally chose matching polynomial model and bilinear interpolation method. Experiments show that the algorithm is to teach the traditional edge detection method to extract regional center of gravity, save a lot of subsequent morphology processing work, and have a more accurate positioning which achieves the accuracy of manual registration
出处 《四川兵工学报》 CAS 2014年第3期105-108,共4页 Journal of Sichuan Ordnance
关键词 二叉划分树 独立距离 双线性插值 图像匹配 binary classification tree independent distance bilinear interpolation image matching
  • 相关文献

参考文献12

  • 1陈新,彭科举,周东翔,刘云辉.一种利用SAR和可见光图像融合检测目标的方法[J].信号处理,2010,26(9):1408-1413. 被引量:4
  • 2Buades A, Coil B, Morel J M. A non -local algorithm for image denoising[ C ]//Computer Vision aml Pattern Recog- nition,2005. CVPR 2005. IEEE Computer Society Confer- ence on. IEEE,2005(2) :60 -65.
  • 3Salembier P,Garrido 1,. Binary partition tree as an effieAent representation for image processing,segmentation and infor- mation retrieval [ J ]. IEEE Trans. Image Process, 2000,9 (4) :561 -576.
  • 4Cloude S,Pnttier E. A review of target deeomposilion /heo- rents in radar tx~larimetly [ J ]. IEEE Trans. Geosei. Remote Sens. , 1996,34(2) :498 -518.
  • 5N. R. Goodman. Statistical analysis based on a certain muh- ivariate complex (,aussian distribution ( an introduction) [ J ]. Ann Math Stat, 1993,34 ( 3 ) : 152 - 177.
  • 6Lee J S,Hoppel K, Mango S,et al. Intensity and phase sta- tistics of multilook polarimetrie and interferometrie SAR im- agery [ J ]. IEEE Trans. Geosei, Remote Sens. , 1994,2 ( 5 ) : 1017 - 1028.
  • 7Tough R J A,Blaeknell D,Quegan S. A statistical descrip- tion of polarimetrie and interferometrie synthetic aperture radar data [ J ]. Proe. I'L Soe. Lond. , 1995,449 ( 1 ) : 567 - 589.
  • 8张雍吉,范晋湘,段连飞.基于区域特征的光学图像与SAR图像配准算法[J].合肥学院学报(自然科学版),2008,18(4):37-40. 被引量:4
  • 9贾伟杰.SAR影像与可见光影像配准研究[D].武汉:武汉理工大学,2010.
  • 10何敬,李永树,李歆,唐敏.基于点特征和边缘特征的无人机影像配准方法[J].西南交通大学学报,2012,47(6):955-961. 被引量:10

二级参考文献57

共引文献29

同被引文献16

  • 1Mashad S Y, Shoukry A. Evaluating the robustness of feature corre- spondence using different feature extractors[C]. Methods and Models in Automation and Robotics (MMAR), 2014:316-321.
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International journal of computer vision, 2004, 60(2): 91-110.
  • 3Ke Y, Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors[C]. Proceedings of the 2004 IEEE Computer Society Conference on, 2004, 2(2): 506-513.
  • 4Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust features [M]. Computer Vision - ECCV, 2006: 404-417.
  • 5Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alternative to SIFT or SURF[C]. Computer Vision (ICCV), 2011: 2564-2571.
  • 6Leutenegger S, Chli M, Siegwart R Y. BRISK: Binary robust invariant scalable keypoints[C]. Computer Vision (ICCV), 2011: 2548-2555.
  • 7Alahi A, Ortiz R, Vandergheynst P. Freak: Fast retina keypoint[C]. Comouter Vision and Pattern Recoanition (CVPR). 2012:510-517.
  • 8Mair E, Hager G D, Burscl~ka D, et al. Adaptive and generic comer de- tection based on the accelerated segment test[M]. Computer Vision - ECCV, 2010: 183-196.
  • 9孙彬,严卫东,张彤,马心璐,边辉,倪维平.良分布的多特征遥感图像自动配准算法[J].光电工程,2012,39(8):38-45. 被引量:4
  • 10王宏志,李美静,张立伟.畸变图像拼接算法研究[J].长春工业大学学报,2012,33(5):533-536. 被引量:4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部