期刊文献+

应用投影收缩的压缩感知锥束CT短扫描重建 被引量:9

Compressing-sensing cone-beam CT short-scan reconstruction based on projection-contraction
下载PDF
导出
摘要 由于锥束CT成像系统在短扫描方式下无法获得完全投影数据,从而限制了图像重建的质量,本文提出了一种基于投影收缩的压缩感知锥束CT短扫描重建算法。考虑BB(Barzilai-Borwen)梯度投影算法的非单调收敛,分析了投影收缩法的预测校正特性,并将校正过程引入到压缩感知图像重建算法中。结合目标函数下降方向和凸集投影下降方向,校正BB梯度投影算法,改善BB梯度投影算法的非单调特性。应用该算法对模拟投影数据和仿体扫描数据分别进行了重建试验。模拟试验结果表明,在25个采样角度下,用提出算法重建图像的信噪比值比自适应最速下降-凸集投影算法、投影收缩算法和BB梯度投影算法的重建结果分别高出9.487 0、9.802 7、3.615 9dB。仿真试验结果表明:在少量投影角度下该算法重建结果有效抑制了条状伪影,清晰重建出边缘细节,极大提高了少量投影数据重建图像的质量。 To solve the problem of image reconstruction of incomplete projection data from a short-scan cone-beam CT, a novel cone-beam CT short-scan reconstruction algorithm was proposed based on pro- jection-contraction method. Aiming at the non-monotonic convergence of the Gradient-Projection Barz- ilari-Borwein (GPBB) algorithm, the predictor-corrector feature of projection-contraction method was analyzed and incorporated into compressed sensing image reconstruction algorithm. The objective func- tion descent direction and the projection onto convex sets descent direction were combined to correct the results of GPBB algorithm to improve the non-monotonic convergence of GPBB algorithm. Then, the experiments were conducted on simulated projection data and phantom scanning data. The simula- ted results for 25 sampling angles show that the signal-to-noise ratios of images reconstructed by PCBB algorithm are 9. 487 0, 9. 802 7, 3. 615 9 db higher than those of images reconstructed by Adap- tive Steepest Descent-Projection onto Convex Sets algorithm, projection contraction algorithm and GPBB algorithm, respectively. The simulation results indicate that when a small amount of projections are acquired, the new algorithm has effectively suppressed strip artifacts and the reconstructed images show clear edges. The algorithm can greatly improved the qualify of images reconstructed from few projection data.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第3期770-778,共9页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.81000651) 苏州市科学技术专项基金资助项目(No.ZXS201003) 苏州市科技计划资助项目(No.SH201210) 江苏省科技计划资助项目(No.BL2012049)
关键词 压缩感知 投影收缩 锥束CT 图像重建 短扫描 compressed sensing projection contraction cone beam CT image reconstruction short scan
  • 相关文献

参考文献29

  • 1LI L,XING Y X,CHEN ZH Q. A curvefiltered FDK (C FDK) reconstruction algorithm for circular cone-beam CT[J].Journal of X-Ray Science and Technology,2011,(03):355-371.
  • 2李铭,张涛,郑健,杨宏成,卢彦飞.基于切线反投影的CT金属位置和形状标定[J].液晶与显示,2013,28(2):295-299. 被引量:4
  • 3GERCHBERG R. Super-resolution through error energy reduction[J].Journal of Modern Optics,1974,(09):709-720.
  • 4PAPOULIS A. A new algorithm in spectral analysis and band-limited extrapolation[J].IEEE Transactions on Circuits and Systems,1975,(09):735-742.
  • 5JIANG M,WANG G. Development of iterattve algorithms for image reconstruction[J].Journal of X-Ray Science and Technology,2002,(1-2):77-86.
  • 6SONG B,PARK J,SONG W. A novel,fast,variable step size gradient method for solving Simultaneous Algebraic Reconstruction Technique (SART)type reconstructions:an example application to CBCT[J].Medical Physics,2011.3444.
  • 7DONOHO D L. Compressed sensing[J].IEEE Transactions on Information Theory,2006,(04):1289-1306.
  • 8CANDES E J,ROMBERG J K,TAO T. Stable signal recovery from incomplete and inaccurate meas urements[J].Communications on Pure and Applied Mathematics,2006,(08):1207-1223.
  • 9KUNG H T,YU C M. Reducing reconciliation communication cost with compressed sensing[J].Journal of Latex Class Files,2010,(01):1-4.
  • 10LAUZIERPT,TANG J,CHEN G H. Prior image constrained compressed sensing:implementation and performance evaluation[J].Medical Physics,2012,(01):66.

二级参考文献76

  • 1杨迪武,邢达,王毅,谭毅,尹邦政.基于代数重建算法的有限角度扫描的光声成像[J].光学学报,2005,25(6):772-776. 被引量:19
  • 2LI C, WANG L V. Photoacoustic tomography and sensing in biomedicine[J]. Physics in Medicine and Biology, 2009, 54(19):R59-R97.
  • 3WANG L V. Prospects of photoaeoustic tomography [J]. Medical Physics, 2008, 35(12): 5758-5767.
  • 4GUO B, LIJ, ZMUDA H, etal.. Mulityfrequency microwave-induced thermal acoustic imaging for breast cancer detection[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con- trol, 2007, 54(11): 2000-2010.
  • 5KOLKMAN R G M, HONDEBRINK E, STEEN- BERGEN W, et al.. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anato- my[J]. Physics in Medicine and Biology, 2009, 54(4) : 1035-1046.
  • 6HU S, MASLOV K, WANG L V, et al.. In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy[J]. Medical Physics, 2009, 36(6) : 2320-2323.
  • 7XU M, WANG L V. Pulsed-microwave-induced th- ermoacoustic tomography: Filtered back-projectionin a circular measurement configuration[J]. Medi- cal Physics, 2002, 29(8): 1661-1669.
  • 8ZHANG C, WANG Y. Deconvolution reconstruc- tion of full-view and limited-view photoacoustic tomography., a simulation study[J]. Journal of the Optical Society of America A, 2008, 25 (10):2436-2443.
  • 9PROVOST J, LESAGE F. The application of compressed sensing for photo-acoustic tomography [J]. IEEE Transaction on Medical Imaging, 2009, 28(4) : 585-594.
  • 10CANDES E, ROMBERG J, TAO T. Robust un- certainty principles: exact signal reconstruction from highly incomplete frequency informatio[J].IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

共引文献49

同被引文献150

  • 1陈明惠,王帆,张晨曦,李福刚,郑刚.基于压缩感知的频域OCT图像稀疏重构[J].光学精密工程,2020,28(1):189-199. 被引量:18
  • 2计振兴,孔繁锵.基于谱间线性滤波的高光谱图像压缩感知[J].光子学报,2012,41(1):82-86. 被引量:12
  • 3贺小伟.生物发光断层成像中光源重建逆问题研究[D].西安:西安电子科技大学,2011.
  • 4DONOHO D L.Compressed sensing[J] .IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 5CANDES E J,WAKIN M B.An introduction to compressive sampling[J] .IEEE Signal Processing Magazine,2008,25(2):21-30.
  • 6DUARTE M F,DAVENPORT M A,TAKHAR D,et al..Single-pixel imaging via compressive sampling[J] .IEEE Signal Processing Magazine,2008,25(2):83-91.
  • 7SUN T,KELLY K.Compressive sensing hyperspectral imager[C] .Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest,San Jose,California,2009:CTuA5.
  • 8WAGADARIKAR A,JOHN R,WILLETT Rt,et al..Single disperser design for coded aperture snapshot spectral imaging[J] .Applied Optics,2008,47(10):44-51.
  • 9WANG Z,YAN F,JIA Y.Spatial-spectral compressive sensing of hyperspectral image[C] .Third IEEE International Conference on Information Science and Technology,Yangzhou,Jiangsu,China,2013:1256-1259.
  • 10AUGUST Y,VACHMAN C,STERN A.Spatial versus spectral compression ratio in compressive sensing of hyperspectral imaging[C] .Compressive Sensing Ⅱ,Baltimore,MD,United states,2013:1-10.

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部