期刊文献+

超超临界火电机组用T23钢的高温蠕变断裂行为 被引量:4

High Temperature Creep Rupture of T23 Steel Used for Ultra-Supercritical Power Plant
原文传递
导出
摘要 通过研究和分析超超临界火电机组用T23钢持久试样的断口形貌及其在600℃高温蠕变过程中的组织演变,探讨了不同应力水平下T23钢的蠕变断裂机制。研究结果表明,T23钢在高应力条件下的蠕变断裂机制类似于常温下典型的韧性断裂,蠕变空洞主要形核于晶内的夹杂物处;而在低应力条件下的蠕变断裂机制表现为脆性沿晶断裂,蠕变空洞则主要形核于晶界第二相处。 The fracture morphology of creep rupture tested samples and microstructural evolution was investigated at 600 ℃, and the creep rupture mechanism of a T23 steel used for ultra-supereritcal power generations was discussed under different stress levels. The results show that, under condition of high stress level, the creep rupture mecha- nism is similar to the ductile fracture at room temperature, and the cavities nucleate mostly at sites of the inclusions, behaving intragranular fracture. However, under low stress level, the creep rupture mechanism is brittle fracture occurred along the grain boundary, and the cavities nucleate mostly at sites of the second-phases, behaving interg ranular fracture.
出处 《钢铁》 CAS CSCD 北大核心 2014年第2期55-59,共5页 Iron and Steel
基金 中科院战略性先导科技专项资助项目(XDA03010301 XDA03010300) 国际热核聚变实验堆(ITER)计划专项资助项目(2009GB109002) 中科院知识创新工程资助项目(KJCX2-YW-N35)
关键词 T23钢 断口分析 组织演变 蠕变断裂机制 T23 steel rupture analysis microstructural evolution creep rupture mechanism
  • 相关文献

参考文献10

  • 1Bendick W, Gabrel J, Hahn B, et al. New Low Alloy Heat Resistant Ferritic Steels T/P23 and T/P24 for Power Plant Application [J]. International Journal of Pressure Vessels and Piping, 2007, 84: 13.
  • 2Vaillant J C, Vandenberghe B, Hahn B, et al. T/P23, 24, 911 and 92: New Grades for Advanced Coal-Fired Power Plants-Properties and Experience [J]. International Journal of Pressure Vessels and Piping, 2008, 857:38.
  • 3Sawada K, Fujitsuka M, Tabuchi M, et al. Effect of Oxida tion on the Creep Rupture Life of ASME T23 Steel [J]. In ternational Journal of Pressure Vessels and Piping, 2009, 86-693.
  • 4Abe F. Bainitic and Martensitic Creep-Resistant Steels [J]. Current Opinion in Solid State and Materials Science, 2004 (8) : 305.
  • 5杨富,章应霖,任永宁,等.新型耐热钢焊接[M].北京:中国电力出版社,2009.
  • 6Dimmler G, Weinert P, Cerjak H. Extrapolation of Short- term Creep Rupture Data-the Potential Risk of Over-Estima tion [J]. International Journal of Pressure Vessels and Pip- ing, 2008, 85: 55.
  • 7Sawada K, Tahuchia M, Kimura K. Creep Strength Degrada- tion of ASME P23/T23 Steels [J]. Materials Science and En- gineering A, 2009, 513-514: 128.
  • 8Hartrott P V, Holmstromb S, Caminadac S, et al. Life Time Prediction for Advanced Low Alloy Steel P23 [J]. Materials Science and Engineering A, 2009, 510-511: 175.
  • 9Whittaker M T, Wilshire B. Creep and Creep Fracture of 2.25Cr-1.6W Steels (Grade 23) [J]. Materials Science and Engineering A, 2010, 527: 4932.
  • 10涂善东,轩福贞,王卫泽.高温蠕变与断裂评价的若干关键问题[J].金属学报,2009,45(7):781-787. 被引量:43

二级参考文献64

  • 1轩福贞,涂善东,王正东.含裂纹结构时间相关的疲劳断裂理论与剩余寿命评价技术[J].力学进展,2005,35(3):391-403. 被引量:16
  • 2Magistri L Traverso A, Cerutti F, Bozzolo M, Costamagna P, Massardo A F. Fuel Cells, 2005; 5:80.
  • 3Ryskamp J M. Next Generation Nuclear Plant-High Level Functions and Requirements, INEEL//EXT-03 01163, Idaho Falls: Idaho National Engineering and Environmental Laboratory, 2003, doi 10.2172/910744.
  • 4Tu S T. Front Mech Eng China, 2007; 2:375.
  • 5Viswanathan R, Stringer J. J Eng Mater Technol, 2000, 122:246.
  • 6Liang X L, Headrick W L, Dharani L R, Zhao S M. Eng Failure Anal, 2007; 14:1233.
  • 7ASME Code Section III, Rules for Construction of Nuclear Power Plant Components, Division 1, Sub-section NH. New York: ASME, 1995.
  • 8Yagi K. Int J Pressure Vesseles Piping, 2008; 85:22.
  • 9Briner B G, Doering M. Science, 1997; 278:257.
  • 10Heinrich A J, Lutz C P, Cupta J A, Eigler D M. Science, 2002; 298:1381.

共引文献44

同被引文献27

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部