期刊文献+

求解广义鞍点问题的一个双参数维数分裂方法

Bi-parameterized dimension splitting method for generalized saddle point problem
下载PDF
导出
摘要 针对一类广义鞍点问题,利用HSS迭代方法的思想,将单参数维数分裂方法推广到双参数形式。先得到双参数维数分裂迭代法的迭代格式并得到相应的求解广义鞍点问题的双参数DS分裂迭代法,然后证明了该迭代方法是收敛的,改进和推广了求解广义鞍点问题的单参数维数分裂迭代算法。数值实验也验证了双参数DS分裂迭代法比单参数MDS分裂迭代法有效。 By using the idea of HSS iteration method, the single-parameter dimension splitting method of pre- conditioner was generalized to a two-parameter form. The two-parameter dimension splitting form were get and then the two-parameter DS method was used for solve the generalized saddle point problem. Moreover, the new method has been proved to be convergent unconditionally. Numerical experiments showed that the two-parameter DS method was robust and attractive than single-parameter dimension splitting method MDS.
机构地区 南昌大学数学系
出处 《南昌大学学报(工科版)》 CAS 2014年第1期74-80,84,共8页 Journal of Nanchang University(Engineering & Technology)
基金 国家自然科学基金资助项目(11101204) 江西省青年科学家(井冈之星)资助项目(20122BCB23003) 江西省研究生创新资助项目(YC2012-S014)
关键词 广义鞍点问题 维数分裂方法 HSS迭代 generalized saddle point problem dimension splitting method HSS iteration method
  • 相关文献

参考文献1

二级参考文献23

  • 1Sturler E D, Liesen J. Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems[J]. SIAM J. Sci. Comput., 2005, 26(5): 1598-1619.
  • 2Wu X N, Golub G H, Cuminato J A, Yuan J Y. Symmetric-triangular decomposition and its applications-Part II: Preconditioners for indefinite systems[J]. BIT, 2008, 48: 139-162.
  • 3Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Apph, 2003, 24(3): 603-626.
  • 4Bai Z Z, Li G Q. Restrictively preconditioned conjugate gradient methods of linear equations[J]. IMA J. Numer. Anal., 2003, 23: 561-580.
  • 5Bai Z Z, Wang Z Q. Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems[J]. J. Comput. Appl. Math., 2006, 187(2): 202-226.
  • 6Benzi M, Golub G H. A preconditioner for generalized saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2004, 26(1): 20-41.
  • 7Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numerica, 2005, 14: 1-137.
  • 8Bramble J H, Pasciak J E, Vassilev A T. Analysis of the inexact Uzawa algorithm for saddle point problems[J]. SIAM J. Numer. Anal., 1997, 34(3): 1072-1092.
  • 9Cao Z H. Fast Uzawa algorithm for generalized saddle point problems[J]. Appl. Numer. Math., 2003, 46(2): 157-171.
  • 10Cao Z H. Positive stable block triangular preconditioners for symmetric saddle point problems[J]. Appl. Numer. Math., 2007, 57(8): 899-910.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部